The distortion of a magnetic field by the flow of a conducting fluid past a circular cylinder

1965 ◽  
Vol 22 (3) ◽  
pp. 561-578 ◽  
Author(s):  
R. Seebass ◽  
K. Tamada

The distortion of a uniform magnetic field, aligned with the flow at infinity, by the potential flow of an inviscid conductor about a circular cylinder is determined. Potential flow of the fluid occurs when the interaction parameter is small; this is the case studied here. In the flow-potential and stream-function plane the problem may be formulated as a singular integral equation. Solutions of this equation show that for small fluid conductivities the magnetic field lines are distorted in the sense of being dragged along by the motion of the fluid. This process continues as the conductivity increases, with fewer and fewer of the magnetic field lines entering the body. For large conductivity this reduced flux of field lines enters over most of the body surface and exits in the neighbourhood of the rear stagnation point; behind the body there is a jet-like structure of magnetic field lines.

1963 ◽  
Vol 18 (8-9) ◽  
pp. 889-895
Author(s):  
F. Schwirzke

The radial density distribution for a plasma in a uniform magnetic field was studied in dependence of pressure and distance of the conducting end plates. It was possible to confirm experimentally the dependence of the radial distribution of the finite length in direction of the field lines. The influence of the magnetic field, of the pressure, and of the length of the plasma column on the radial density profile is, in different gases, qualitatively in accordance with the “short-circuiting” theory of A. SIMON.


1988 ◽  
Vol 196 ◽  
pp. 323-344 ◽  
Author(s):  
F. Cattaneo ◽  
D. W. Hughes

Motivated by considerations of the solar toroidal magnetic field we have studied the behaviour of a layer of uniform magnetic field embedded in a convectively stable atmosphere. Since the field can support extra mass, such a configuration is top-heavy and thus instabilities of the Rayleigh-Taylor type can occur. For both static and rotating basic states we have followed the evolution of the interchange modes (no bending of the field lines) by integrating numerically the nonlinear compressible MHD equations. The initial Rayleigh-Taylor instability of the magnetic field gives instabilities to strong shearing motions, thereby exciting secondary Kelvin-Helmholtz instabilities which wrap the gas into regions of intense vorticity. The subsequent motions are determined primarily by the strong interactions between vortices which are responsible for the rapid disruption of the magnetic layer.


2015 ◽  
Vol 738-739 ◽  
pp. 893-898
Author(s):  
Jun Feng Zhu ◽  
Xin Yan ◽  
Ling Ling Zhou ◽  
Xiao Xin Zhao

Based on the basic principles of electromagnetism, the application of Shanghai Fudan-day Welcomes UNESCO Instruments Ltd. THQHC-1 type Helmholtz coil magnetic field measuring instrument for measuring coil uniform magnetic field generates a magnetic field on the carrier to get round the coil axis, online circle center at (coordinate origin) at the maximum magnetic field strength. Starting from the coordinate origin, to the sides, the magnetic field lines accelerate the decline, when the distance exceeds the coil radius, the decelerating decline. Conclusions for the understanding of a uniform magnetic field reference.


1990 ◽  
Vol 44 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Hiromitsu Hamabata

Exact wave solutions of the nonlinear jnagnetohydrodynamic equations for a highly conducting incompressible fluid are obtained for the cases where the physical quantities are independent of one Cartesian co-ordina.te and for where they vary three-dimensionally but both the streamlines and magnetic field lines lie in parallel planes. It is shown that there is a class of exact wave solutions with large amplitude propagating in a straight but non-uniform magnetic field with constant or non-uniform velocity.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Todd Elder ◽  
Allen H. Boozer

The prominence of nulls in reconnection theory is due to the expected singular current density and the indeterminacy of field lines at a magnetic null. Electron inertia changes the implications of both features. Magnetic field lines are distinguishable only when their distance of closest approach exceeds a distance $\varDelta _d$ . Electron inertia ensures $\varDelta _d\gtrsim c/\omega _{pe}$ . The lines that lie within a magnetic flux tube of radius $\varDelta _d$ at the place where the field strength $B$ is strongest are fundamentally indistinguishable. If the tube, somewhere along its length, encloses a point where $B=0$ vanishes, then distinguishable lines come no closer to the null than $\approx (a^2c/\omega _{pe})^{1/3}$ , where $a$ is a characteristic spatial scale of the magnetic field. The behaviour of the magnetic field lines in the presence of nulls is studied for a dipole embedded in a spatially constant magnetic field. In addition to the implications of distinguishability, a constraint on the current density at a null is obtained, and the time required for thin current sheets to arise is derived.


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


2021 ◽  
Vol 502 (1) ◽  
pp. 1263-1278
Author(s):  
Richard Kooij ◽  
Asger Grønnow ◽  
Filippo Fraternali

ABSTRACT The large temperature difference between cold gas clouds around galaxies and the hot haloes that they are moving through suggests that thermal conduction could play an important role in the circumgalactic medium. However, thermal conduction in the presence of a magnetic field is highly anisotropic, being strongly suppressed in the direction perpendicular to the magnetic field lines. This is commonly modelled by using a simple prescription that assumes that thermal conduction is isotropic at a certain efficiency f < 1, but its precise value is largely unconstrained. We investigate the efficiency of thermal conduction by comparing the evolution of 3D hydrodynamical (HD) simulations of cold clouds moving through a hot medium, using artificially suppressed isotropic thermal conduction (with f), against 3D magnetohydrodynamical (MHD) simulations with (true) anisotropic thermal conduction. Our main diagnostic is the time evolution of the amount of cold gas in conditions representative of the lower (close to the disc) circumgalactic medium of a Milky-Way-like galaxy. We find that in almost every HD and MHD run, the amount of cold gas increases with time, indicating that hot gas condensation is an important phenomenon that can contribute to gas accretion on to galaxies. For the most realistic orientations of the magnetic field with respect to the cloud motion we find that f is in the range 0.03–0.15. Thermal conduction is thus always highly suppressed, but its effect on the cloud evolution is generally not negligible.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


Sign in / Sign up

Export Citation Format

Share Document