coil axis
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Moradkhani ◽  
Seyyed Hossein Hosseini ◽  
M. Mansouri ◽  
G. Ahmadi ◽  
Mengjie Song

AbstractThere is a lack of well-verified models in the literature for the prediction of the frictional pressure drop (FPD) in the helically coiled tubes at different conditions/orientations. In this study, the robust and universal models for estimating two-phase FPD in smooth coiled tubes with different orientations were developed using several intelligent approaches. For this reason, a databank comprising 1267 experimental data samples was collected from 12 independent studies, which covers a broad range of fluids, tube diameters, coil diameters, coil axis inclinations, mass fluxes, saturation temperatures, and vapor qualities. The earlier models for straight and coiled tubes were examined using the collected database, which showed absolute average relative error (AARE) higher than 21%. The most relevant dimensionless groups were used as models’ inputs, and the neural network approach of multilayer perceptron and radial basis functions (RBF) were developed based on the homogenous equilibrium method. Although both intelligent models exhibited excellent accuracy, the RBF model predicted the best results with AARE 4.73% for the testing process. In addition, an explicit FPD model was developed by the genetic programming (GP), which showed the AARE of 14.97% for all data points. Capabilities of the proposed models under different conditions were described and, the sensitivity analyses were performed.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 879
Author(s):  
Alla E. Sidorova ◽  
Ekaterina V. Malyshko ◽  
Aleksey O. Lutsenko ◽  
Denis K. Shpigun ◽  
Olga E. Bagrova

The quantitative evaluation of the chirality of macromolecule structures remains one of the exciting issues in biophysics. In this paper, we propose methods for quantitative analysis of the chirality of protein helical and superhelical structures. The analysis of the chirality sign of the protein helical structures (α-helices and -helices) is based on determining the mixed product of every three consecutive vectors between neighboring reference points—α-carbons atoms. The method for evaluating the chirality sign of coiled-coil structures is based on determining the direction and value of the angle between the coiled-coil axis and the α-helices axes. The chirality sign of the coiled coil is calculated by averaging the value of the cosine of the corresponding angle for all helices forming the superhelix. Chirality maps of helical and superhelical protein structures are presented. Furthermore, we propose an analysis of the distributions of helical and superhelical structures in polypeptide chains of several protein classes. The features common to all studied classes and typical for each protein class are revealed. The data obtained, in all likelihood, can reflect considerations about molecular machines as chiral formations.


2020 ◽  
Author(s):  
Sergey N. Makarov ◽  
William A. Wartman ◽  
Mohammad Daneshzand ◽  
Aapo Nummenmaa

AbstractA particular yet computationally successful solution of an inverse transcranial magnetic stimulation (TMS) problem is reported. The goal has been focusing the normal unsigned electric field at the inner cortical surface and its vicinity (the D wave activation site) given a unique high-resolution gyral pattern of a subject and a precise coil model.For 16 subjects and 32 arbitrary target points, the solution decreases the mean deviation of the maximum-field domain from the target by a factor of 2 on average. The reduction in the maximum-field area is expected to quadruple. The average final deviation is 6 mm.Rotation about the coil axis is the most significantly altered parameter, and the coil moves 10 mm on average during optimization. The maximum electric field magnitude decreases by 16% on average. Stability of the solution is enforced. The relative average de-focalization is below 1.2 when position/orientation accuracies are within 3 mm/6 degrees, respectively. The solution for the maximum normal field may also maximize the total field and its gradient for neighboring cortical layers III-V (I wave activation).


Author(s):  
H. Ahmed ◽  
S. Kar ◽  
A.L. Giesecke ◽  
D. Doria ◽  
G. Nersisyan ◽  
...  

The ultrafast charge dynamics following the interaction of an ultra-intense laser pulse with a foil target leads to the launch of an ultra-short, intense electromagnetic (EM) pulse along a wire connected to the target. Due to the strong electric field (of the order of $\text{GV m}^{-1}$ ) associated to such laser-driven EM pulses, these can be exploited in a travelling-wave helical geometry for controlling and optimizing the parameters of laser accelerated proton beams. The propagation of the EM pulse along a helical path was studied by employing a proton probing technique. The pulse-carrying coil was probed along two orthogonal directions, transverse and parallel to the coil axis. The temporal profile of the pulse obtained from the transverse probing of the coil is in agreement with the previous measurements obtained in a planar geometry. The data obtained from the longitudinal probing of the coil shows a clear evidence of an energy dependent reduction of the proton beam divergence, which underpins the mechanism behind selective guiding of laser-driven ions by the helical coil targets.


2015 ◽  
Vol 738-739 ◽  
pp. 893-898
Author(s):  
Jun Feng Zhu ◽  
Xin Yan ◽  
Ling Ling Zhou ◽  
Xiao Xin Zhao

Based on the basic principles of electromagnetism, the application of Shanghai Fudan-day Welcomes UNESCO Instruments Ltd. THQHC-1 type Helmholtz coil magnetic field measuring instrument for measuring coil uniform magnetic field generates a magnetic field on the carrier to get round the coil axis, online circle center at (coordinate origin) at the maximum magnetic field strength. Starting from the coordinate origin, to the sides, the magnetic field lines accelerate the decline, when the distance exceeds the coil radius, the decelerating decline. Conclusions for the understanding of a uniform magnetic field reference.


1991 ◽  
Vol 111 (9) ◽  
pp. 794-795
Author(s):  
Tetsuya Abe ◽  
Sumio Kogoshi
Keyword(s):  

1987 ◽  
Vol 26 (Part 1, No. 10) ◽  
pp. 1727-1732
Author(s):  
Sukeomi Ogi ◽  
Masaharu Shiratani ◽  
Yukio Watanabe

1982 ◽  
Vol 104 (3) ◽  
pp. 180-185 ◽  
Author(s):  
J. V. Gluck

Multiaxial fatigue studies of peened helical extension springs made of music wire were performed in a specially designed testing machine. The test regime imposed static torsion and alternating laterial deflection, with the spring ends held parallel. The maximum stresses, which were primarily due to bending, occurred in the first turn out of the specimen grip at an end of the coil axis normal to the direction of lateral motion. The stresses in the middle turn ranged between 88-94 percent of those in the ends turns. The practical fatigue limit was about 100,000-300,000 cycles, with the principal tensile stress averaging 50 percent of initial wire tensile strength and maximum shear stress averaging 28 percent of initial wire tensile strength. For static stresses up to 32 percent of tensile strength, the alternating stress at the fatigue limit was essentially invariant, as predicted by Sines’ criterion for multiaxial fatigue.


Sign in / Sign up

Export Citation Format

Share Document