Magnetic Field Spectroheliograms from the San Fernando Observatory

1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.

2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


2008 ◽  
Vol 4 (S259) ◽  
pp. 551-552
Author(s):  
Hanna Kotarba ◽  
H. Lesch ◽  
K. Dolag ◽  
T. Naab ◽  
P. H. Johansson ◽  
...  

AbstractWe present a set of global, self-consistentN-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the codeVine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċB-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the codeGadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.


2017 ◽  
Vol 13 (S336) ◽  
pp. 215-218
Author(s):  
Ciriaco Goddi ◽  
Gabriele Surcis

AbstractThe Turner-Welch Object in the W3(OH) high-mass star forming complex drives a synchrotron jet, which is quite exceptional for a high-mass protostar, and is associated with a strongly polarized water maser source, W3(H2O), making it an optimal target to investigate the role of magnetic fields on the innermost scales of protostellar disk-jet systems. We report here full polarimetric VLBA observations of water masers. The linearly polarized emission from water masers provides clues on the orientation of the local magnetic field, while the measurement of the Zeeman splitting from circular polarization provides its strength. By combining the information on the measured orientation and strength of the magnetic field with the knowledge of the maser velocities, we infer that the magnetic field evolves from having a dominant component parallel to the outflow velocity in the pre-shock gas (with field strengths of the order of a few tens of mG), to being mainly dominated by the perpendicular component (of order of a few hundred of mG) in the post-shock gas where the water masers are excited. The general implication is that in the undisturbed (i.e. not-shocked) circumstellar gas, the flow velocities would follow closely the magnetic field lines, while in the shocked gas the magnetic field would be re-configured to be parallel to the shock front as a consequence of gas compression.


1988 ◽  
Vol 20 (1) ◽  
pp. 100-102
Author(s):  
G.E. Brueckner

The crucial role of magnetic fields in any mechanism to heat the outer solar atmosphere has been generally accepted by all authors. However, there is still no agreement about the detailed function of the magnetic field. Heating mechanisms can be divided up into 4 classes: (I) The magnetic field plays a passive role as a suitable medium for the propagation of Alfvén waves from the convection zone into the corona (Ionson, 1984). (II) In closed magnetic structures the slow random shuffling of field lines by convective motions below the surface induces electric currents in the corona which heat it by Joule dissipation (Heyvaerts and Priest, 1984). (Ill) Emerging flux which is generated in the convection zone reacts with ionized material while magnetic field lines move through the chromosphere, transition zone and corona. Rapid field line annihilation, reconnection and drift currents result in heating and material ejection (Brueckner, 1987; Brueckner et al., 1987; Cook et al., 1987). (IV) Acoustic waves which could heat the corona can be guided by magnetic fields. Temperature distribution, wave motions and shock formation are highly dependent on the geometry of the flux tubes (Ulmschneider and Muchmore, 1986; Ulmschneider, Muchmore and Kalkofen, 1987).


2012 ◽  
Vol 8 (S294) ◽  
pp. 137-142
Author(s):  
A. V. Getling ◽  
V. V. Kolmychkov ◽  
O. S. Mazhorova

AbstractMagnetoconvection in a horizontal layer of incompressible fluid is simulated numerically. The initial magnetic field is assumed to be uniform and horizontal. The interaction of quasi-ordered cellular convection with the magnetic field is shown to be able to produce bipolar (and also diverse more complex) configurations of a substantially amplified magnetic field. The operation of this mechanism, which can be regarded as a modification of the mechanism suggested by Tverskoi (1966), is controlled by the very topology of the cellular flow, should be manifest on various spatial scales, and does not require strong initial fields. Magnetic configurations develop both in the central parts of convection cells, where circulatory fluid motion “winds” magnetic field lines, and in the network formed by their peripheral regions due to the “sweeping” of magnetic field lines.


1980 ◽  
Vol 91 ◽  
pp. 217-221 ◽  
Author(s):  
Z. Švestka ◽  
S. F. Martin ◽  
R. A. Kopp

In a series of papers on the flare of 29 July 1973 (Nolte et al., 1979; Martin, 1979; Švestka et al., 1979) it has been shown that Hα “post-flare” loops are the cooled aftermath of previously hot coronal loops which were visible in x-rays in the same position earlier in the flare. Kopp and Pneuman (1976) have proposed that these post-flare loops are formed by a process of successive magnetic field reconnections of previously distended magnetic field lines as illustrated in Figure 1. Each successive reconnection of the magnetic field yields a closed magnetic loop that forms above and concentric with previously formed loops. A shock wave created during each sudden reconnection travels down both legs of each loop and provides energy for ionizing chromospheric mass at the footpoints of the loop. Subsequent condensation of the ionized mass at the tops of the loops renders them visible as this mass falls to the chromosphere.


Author(s):  
V. Lozitsky ◽  
I. Yakovkin ◽  
E. Kravchenko

We present the results of observations of two powerful limb solar flares which occured on 17 July 1981 and 14 July 2005. Spectral observations of these flares were carried out with the Echelle spectrograph of the Horizontal Solar Telescope of the Astronomical Observatory of Taras Shevchenko National University of Kyiv. In order to measure the magnetic fields in these flares, I ± V profiles of К СаІІ, HeI 4471.5 and Нα lines were studied. It was found that effective (averaged) magnetic field Вeff in the flares reached 1100–3000 G on heights 2–14 Mm. However, the spectral evidences to yet stronger fields of ~ 104 G range were found. In particular, the weak spectral evidences of large Zeeman splitting were found in first flare by HeI 4471.5 line; this evidences corresponds to superstrong magnetic field of 15.5 kG. In the second flare, Нα line has non-parallelism of bisectors of I ± V profiles which can reflect existence of 1550–3000 G fields in the flare. However, in frame of simple two-component model these observed values can correspond to true local (amplitude) magnetic fields Вmax in range 4.65–18 kG. Apparently, such superstrong magnetic fields arise in structures of a force-free type, with strong twisting of the field lines. It is precisely such field values that are necessary in solar flares for energy reasons. Indeed, solar flares emit energy in the range of 1027-1032 erg in a volume of the order of 1027 cm3. Elementary calculations show that in order to provide such energy in such a volume, the magnetic field strength should be at least 103 G. In addition, if we take into account that solar magnetic fields have the sub-telescopic (spatially unresolved) structure, then the local magnetic field intensities in the flares at the coronal level can be expected even higher.


2019 ◽  
Vol 15 (S354) ◽  
pp. 160-165
Author(s):  
Chia-Hsien Lin ◽  
Dean-Yi Chou

AbstractSolar magnetic fields are believed to originate from the base of convection zone. However, it has been difficult to obtain convincing observational evidence of the magnetic fields in the deep convection zone. The goal of this study is to investigate whether solar meridional flows can be used to detect the magnetic-field effects. Meridional flows are axisymmetric flows on the meridional plane. Our result shows that the flow pattern in the entire convection zone changes significantly from solar minimum to maximum. The changes all centered around active latitudes, suggesting that the magnetic fields are responsible for the changes. The results indicate that the meridional flow can be used to detect the effects of magnetic field in the deep convection zone.The results have been published in the Astrophysical Journal (lc2018).


1998 ◽  
Vol 164 ◽  
pp. 159-160
Author(s):  
J. M. Attridge ◽  
D. H. Roberts ◽  
J. F.C. Wardle

AbstractAs part of our continuing study of parsec-scale magnetic fields in active galactic nuclei we have obtained deep polarization-sensitive images of the blazar 1055+018 with the VLBA at 5 GHz. These dramatic images reveal a magnetized layer of material on the outer surfaces of the jet, distinct from the bulk of the jet. This morphology suggests interaction of the jet with the surrounding medium, the resulting shear stretching the magnetic field lines in the direction of the flow. Further multi-frequency polarization-sensitive observations of 1055+018 offer the opportunity to study radio jet-ambient medium interactions in detail.


2010 ◽  
Vol 6 (S273) ◽  
pp. 303-307
Author(s):  
Sreejith Padinhatteeri ◽  
Sankarasubramanian K.

AbstractWe have observed formation of penumbrae on a pore in the active region NOAA10838 using Dunn Solar Telescope at NSO, Sunpot, USA. Simultaneous observations using different instruments (DLSP, UBF, Gband and CaK) provide us with vector magnetic field at photosphere, intensity images and Doppler velocity at different heights from photosphere to chromosphere. Results from our analysis of this particular data-set suggests that penumbrae are formed as a result of relaxation of magnetic field due to a flare happening at the same time. Images in Hα show the flare (C 2.9 as per GOES) and vector magnetic fields show a re-orientation and reduction in the global α value (a measure of twist). We feel such relaxation of loop structures due to reconnections or flare could be one of the way by which field lines fall back to the photosphere to form penumbrae.


Sign in / Sign up

Export Citation Format

Share Document