Heat transfer and transition to turbulence in the shock-induced boundary layer on a semi-infinite flat plate

1969 ◽  
Vol 36 (1) ◽  
pp. 87-112 ◽  
Author(s):  
W. R. Davies ◽  
L. Bernstein

The results of experiments designed to investigate the shock-induced boundary layer on a semi-infinite flat plate are described.Those for the laminar boundary layer are shown to be in agreement with a theory due to Lam & Crocco (1958) which describes two distinct domains, one near the shock where the flow is quasi-steady in a shock-fixed co-ordinate system and an unsteady region in which the flow characteristics approach the familiar steady state asymptotically. Experimental results are also presented for the non-laminar boundary layer. In particular the transition to turbulence in this unsteady boundary layer is discussed in some detail.‘Establishment times’ for steady boundary layers are given for both laminar and turbulent flows, and their relevance to the testing times available in shock tubes is discussed. The measured heat transfer rates are compared with existing theories.

1975 ◽  
Vol 97 (3) ◽  
pp. 482-484 ◽  
Author(s):  
C. B. Watkins

Numerical solutions are described for the unsteady thermal boundary layer in incompressible laminar flow over a semi-infinite flat plate set impulsively into motion, with the simultaneous imposition of a constant temperature difference between the plate and the fluid. Results are presented for several Prandtl numbers.


1970 ◽  
Vol 92 (3) ◽  
pp. 385-392 ◽  
Author(s):  
W. R. Wolfram ◽  
W. F. Walker

The present study was performed in order to determine the effects of upstream mass injection on downstream heat transfer in a reacting laminar boundary layer. The study differs from numerous previous investigations in that no similarity assumptions have been made. The complete set of coupled reacting laminar boundary layer equations with discontinuous mass injection was solved for this problem using an integral-matrix technique. The effects of mass injection on heat transfer to both sharp and blunt-nosed isothermal flat plates were studied for a Mach 2 freestream. The amount of injection and the length of the injected region were varied for each body. Heat transfer rates were found to decrease markedly in the injected region. A sharp rise in heat transfer was found immediately downstream of the region of injection followed by an asymptotic approach to the heat transfer rates calculated for the case of no injection. An insulating effect was found to persist for a considerable distance downstream from the injection region. The distance required for this insulating effect to die out was found to depend on the length of the injection region as well as the rate of injection.


1965 ◽  
Vol 87 (3) ◽  
pp. 403-408 ◽  
Author(s):  
A. R. Bu¨yu¨ktu¨r ◽  
J. Kestin

The paper presents solutions to the boundary-layer equations for heat-transfer rates into an accelerated and decelerated boundary layer in the presence of a linearly varying free-stream velocity. The equations are solved for the case of constant coefficients with frictional heat neglected, but over a range of Prandtl numbers.


Sign in / Sign up

Export Citation Format

Share Document