Mean-Field Magnetohydrodynamics and Dynamo; Theory. By F. K RAUSE and K.-H. R äDLER . Pergamon, Oxford OX3 0BW 1980. 271 pp. £15.

1982 ◽  
Vol 118 (-1) ◽  
pp. 530
Author(s):  
T. G. Cowling
Keyword(s):  
1998 ◽  
Vol 167 ◽  
pp. 406-414
Author(s):  
N. Seehafer

AbstractFilaments are a global phenomenon and their formation, structure and dynamics are determined by magnetic fields. So they are an important signature of the solar magnetism. The central mechanism in traditional mean-field dynamo theory is the alpha effect and it is a major result of this theory that the presence of kinetic or magnetic helicities is at least favourable for the effect. Recent studies of the magnetohydrodynamic equations by means of numerical bifurcation-analysis techniques have confirmed the decisive role of helicity for a dynamo effect. The alpha effect corresponds to the simultaneous generation of magnetic helicities in the mean field and in the fluctuations, the generation rates being equal in magnitude and opposite in sign. In the case of statistically stationary and homogeneous fluctuations, in particular, the alpha effect can increase the energy in the mean magnetic field only under the condition that also magnetic helicity is accumulated there. Generally, the two helicities generated by the alpha effect, that in the mean field and that in the fluctuations, have either to be dissipated in the generation region or to be transported out of this region. The latter may lead to the appearance of helicity in the atmosphere, in particular in filaments, and thus provide valuable information on dynamo processes inaccessible to in situ measurements.


2020 ◽  
Vol 495 (1) ◽  
pp. 238-248
Author(s):  
N Kleeorin ◽  
N Safiullin ◽  
K Kuzanyan ◽  
I Rogachevskii ◽  
A Tlatov ◽  
...  

ABSTRACT A theory of the mean tilt of sunspot bipolar regions (the angle between a line connecting the leading and following sunspots and the solar equator) is developed. A mechanism of formation of the mean tilt is related to the effect of the Coriolis force on meso-scale motions of super-granular convection and large-scale meridional circulation. The balance between the Coriolis force and the Lorentz force (the magnetic tension) determines an additional contribution caused by the large-scale magnetic field to the mean tilt of the sunspot bipolar regions at low latitudes. The latitudinal dependence of the solar differential rotation affects the mean tilt, which can explain deviations from Joy’s law for the sunspot bipolar regions at high latitudes. The theoretical results obtained and the results from numerical simulations based on the non-linear mean-field dynamo theory, which takes into account conservation of the total magnetic helicity and the budget equation for the evolution of the Wolf number density, are in agreement with observational data of the mean tilt of sunspot bipolar regions over individual solar cycles 15–24.


1976 ◽  
Vol 71 ◽  
pp. 323-344 ◽  
Author(s):  
K.-H. Rädler

One of the most striking features of both the magnetic field and the motions observed at the Sun is their highly irregular or random character which indicates the presence of rather complicated magnetohydrodynamic processes. Of great importance in this context is a comprehension of the behaviour of the large scale components of the magnetic field; large scales are understood here as length scales in the order of the solar radius and time scales of a few years. Since there is a strong relationship between these components and the solar 22-years cycle, an insight into the mechanism controlling these components also provides for an insight into the mechanism of the cycle. The large scale components of the magnetic field are determined not only by their interaction with the large scale components of motion. On the contrary, a very important part is played also by an interaction between the large and the small scale components of magnetic field and motion so that a very complicated situation has to be considered.


2004 ◽  
Vol 215 ◽  
pp. 289-291
Author(s):  
Ilkka Tuominen ◽  
Svetlana V. Berdyugina ◽  
Maarit J. Korpi

Observational evidence, based both on spectroscopic Doppler imaging and long-term photometry, of strongly nonaxisymmetric spot distributions in magnetically very active late-type stars, with a special cyclic behaviour (the “flip-flop” effect), is presented. Theoretical implications of these results are discussed from the point of view of nonlinear mean-field dynamo theory.


1993 ◽  
Vol 157 ◽  
pp. 19-23
Author(s):  
J.H.G.M. van Geffen

The idea behind the use of ensemble averaging and the finite magnetic energy method of van Geffen and Hoyng (1992) is briefly discussed. Applying this method to the solar dynamo shows that the turbulence — an essential ingredient of traditional mean field dynamo theory — poses grave problems: the turbulence makes the magnetic field so unstable that it becomes impossible to recognize any period.


2002 ◽  
Vol 9 (3/4) ◽  
pp. 171-187 ◽  
Author(s):  
K.-H. Rädler ◽  
M. Rheinhardt ◽  
E. Apstein ◽  
H. Fuchs

Abstract. In the Forschungszentrum Karlsruhe an experiment has been constructed which demonstrates a homogeneous dynamo as is expected to exist in the Earth's interior. This experiment is discussed within the framework of mean-field dynamo theory. The main predictions of this theory are explained and compared with the experimental results. Key words. Dynamo, geodynamo, dynamo experiment, mean-field dynamo theory, a-effect


Sign in / Sign up

Export Citation Format

Share Document