Large deformations of a cylindrical liquid-filled membrane by a viscous shear flow

1987 ◽  
Vol 179 ◽  
pp. 283-305 ◽  
Author(s):  
George I. Zahalak ◽  
Peddada R. Rao ◽  
Salvatore P. Sutera

This paper treats the steady flow fields generated inside and outside an initially circular, inextensible, cylindrical membrane filled with an incompressible viscous fluid when the membrane is placed in a two-dimensional shear flow of another viscous fluid. The Reynolds numbers of both the interior and exterior flows were assumed to be zero (‘creeping flow’), but no further approximations were made in the formulation. A series solution of the resulting free boundary-value problem in powers of a dimensionless shear rate parameter was constructed through fifth order. When combined with a conformal coordinate transformation this series gave accurate results for large deformations of the membrane (up to an aspect ratio of 2.5). The rather tedious algebraic manipulations required to obtain the series solution were done by computer with a symbol-manipulation program (reduce), which both formulated the boundary-value problems for each successive order and solved them. Results are presented which show how the shear rate and fluid viscosities influence the internal and external velocity and pressure fields, the membrane deformation and its ‘tank-treading’ frequency, and the membrane tension.This work demonstrates that classical perturbation techniques combined with computer algebra offer a useful alternative to purely numerical methods for problems of this type.

2011 ◽  
Vol 678 ◽  
pp. 221-247 ◽  
Author(s):  
P. M. VLAHOVSKA ◽  
Y.-N. YOUNG ◽  
G. DANKER ◽  
C. MISBAH

We study the motion and deformation of a liquid capsule enclosed by a surface-incompressible membrane as a model of red blood cell dynamics in shear flow. Considering a slightly ellipsoidal initial shape, an analytical solution to the creeping-flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into account the membrane fluidity, area-incompressibility and resistance to bending. The theory captures the observed transition from tumbling to swinging as the shear rate increases and clarifies the effect of capsule deformability. Near the transition, intermittent behaviour (swinging periodically interrupted by a tumble) is found only if the capsule deforms in the shear plane and does not undergo stretching or compression along the vorticity direction; the intermittency disappears if deformation along the vorticity direction occurs, i.e. if the capsule ‘breathes’. We report the phase diagram of capsule motions as a function of viscosity ratio, non-sphericity and dimensionless shear rate.


1998 ◽  
Vol 361 ◽  
pp. 117-143 ◽  
Author(s):  
S. RAMANUJAN ◽  
C. POZRIKIDIS

The deformation of a liquid capsule enclosed by an elastic membrane in an infinite simple shear flow is studied numerically at vanishing Reynolds numbers using a boundary-element method. The surface of the capsule is discretized into quadratic triangular elements that form an evolving unstructured grid. The elastic membrane tensions are expressed in terms of the surface deformation gradient, which is evaluated from the position of the grid points. Compared to an earlier formulation that uses global curvilinear coordinates, the triangular-element formulation suppresses numerical instabilities due to uneven discretization and thus enables the study of large deformations and the investigation of the effect of fluid viscosities. Computations are performed for capsules with spherical, spheroidal, and discoidal unstressed shapes over an extended range of the dimensionless shear rate and for a broad range of the ratio of the internal to surrounding fluid viscosities. Results for small deformations of spherical capsules are in quantitative agreement with the predictions of perturbation theories. Results for large deformations of spherical capsules and deformations of non-spherical capsules are in qualitative agreement with experimental observations of synthetic capsules and red blood cells. We find that initially spherical capsules deform into steady elongated shapes whose aspect ratios increase with the magnitude of the shear rate. A critical shear rate above which capsules exhibit continuous elongation is not observed for any value of the viscosity ratio. This behaviour contrasts with that of liquid drops with uniform surface tension and with that of axisymmetric capsules subject to a stagnation-point flow. When the shear rate is sufficiently high and the viscosity ratio is sufficiently low, liquid drops exhibit continuous elongation leading to breakup. Axisymmetric capsules deform into thinning needles at sufficiently high rates of elongation, independent of the fluid viscosities. In the case of capsules in shear flow, large elastic tensions develop at large deformations and prevent continued elongation, stressing the importance of the vorticity of the incident flow. The long-time behaviour of deformed capsules depends strongly on the unstressed shape. Oblate capsules exhibit unsteady motions including oscillation about a mean configuration at low viscosity ratios and continuous rotation accompanied by periodic deformation at high viscosity ratios. The viscosity ratio at which the transition from oscillations to tumbling occurs decreases with the sphericity of the unstressed shape. Results on the effective rheological properties of dilute suspensions confirm a non-Newtonian shear-thinning behaviour.


2020 ◽  
Vol 65 (7) ◽  
pp. 242-245
Author(s):  
A. I. Ageev ◽  
A. N. Osiptsov
Keyword(s):  

2015 ◽  
Vol 782 ◽  
pp. 260-299 ◽  
Author(s):  
Preyas N. Shah ◽  
Eric S. G. Shaqfeh

Surfaces that include heterogeneous mass transfer at the microscale are ubiquitous in nature and engineering. Many such media are modelled via an effective surface reaction rate or mass transfer coefficient employing the conventional ansatz of kinetically limited transport at the microscale. However, this assumption is not always valid, particularly when there is strong flow. We are interested in modelling reactive and/or porous surfaces that occur in systems where the effective Damköhler number at the microscale can be $O(1)$ and the local Péclet number may be large. In order to expand the range of the effective mass transfer surface coefficient, we study transport from a uniform bath of species in an unbounded shear flow over a flat surface. This surface has a heterogeneous distribution of first-order surface-reactive circular patches (or pores). To understand the physics at the length scale of the patch size, we first analyse the flux to a single reactive patch. We use both analytic and boundary element simulations for this purpose. The shear flow induces a 3-D concentration wake structure downstream of the patch. When two patches are aligned in the shear direction, the wakes interact to reduce the per patch flux compared with the single-patch case. Having determined the length scale of the interaction between two patches, we study the transport to a periodic and disordered distribution of patches again using analytic and boundary integral techniques. We obtain, up to non-dilute patch area fraction, an effective boundary condition for the transport to the patches that depends on the local mass transfer coefficient (or reaction rate) and shear rate. We demonstrate that this boundary condition replaces the details of the heterogeneous surfaces at a wall-normal effective slip distance also determined for non-dilute patch area fractions. The slip distance again depends on the shear rate, and weakly on the reaction rate, and scales with the patch size. These effective boundary conditions can be used directly in large-scale physics simulations as long as the local shear rate, reaction rate and patch area fraction are known.


1960 ◽  
Vol 7 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Alar Toomre

A simple method is presented in this paper for calculating the secondary velocities, andthe lateral displacement of total pressure surfaces (i.e. the ‘displacement effect’) in the plane of symmetry ahead of an infinitely long cylinder situated normal to a steady, incompressible, slightly viscous shear flow; the cylinder is also perpendicular to the vorticity, which is assumed uniform but small. The method is based on lateral gradients of pressure, these being calculated from the primary flow alone. Profiles of the secondary velocities are obtained at several Reynolds numbers ahead of two specific cylindrical shapes: a circular cylinder, and a flat plate normal to the flow. The displacement effect is derived and, rathe surprisingly, is found to be virtually independent of the Reynolds number.


Biorheology ◽  
1988 ◽  
Vol 25 (1-2) ◽  
pp. 113-122 ◽  
Author(s):  
T. Murata ◽  
T.W. Secomb

2005 ◽  
Vol 15 (5-6) ◽  
pp. 263-278
Author(s):  
J.-H. Nam ◽  
J.R. Cotton ◽  
J.W. Grant

A dynamic 3-D hair bundle model including inertia and viscous fluid drag effects based on the finite element method is presented. Six structural components are used to construct the hair bundle – kinocilium, stereocilia, upper lateral links, shaft links, tip links, and kinocilial links. Fluid drag is distributed on the surface of cilia columns. Bundle mechanics are analyzed under two distinct loading conditions: (1) drag caused by the shear flow of the surrounding endolymph fluid (fluid-forced), (2) a single force applied to the tip of the kinocilium (point-forced). A striolar and a medial extrastriolar vestibular hair cell from the utricle of a turtle are simulated. The striolar cell bundle shows a clear difference in tip link tension profile between fluid-forced and point-forced cases. When the striolar cell is fluid forced, it shows more evenly distributed tip link tensions and is far more sensitive, responding like an on/off switch. The extrastriolar cell does not show noticeable differences between the forcing types. For both forcing conditions, the extrastriolar cell responds serially – the nearest tip links to the kinocilium get tensed first, then the tension propagates to the farther tip links.


Sign in / Sign up

Export Citation Format

Share Document