liquid drops
Recently Published Documents


TOTAL DOCUMENTS

718
(FIVE YEARS 75)

H-INDEX

69
(FIVE YEARS 6)

2021 ◽  
Vol 61 (6) ◽  
pp. 768-776
Author(s):  
Andrii Sliusenko ◽  
Vitalii Ponomarenko ◽  
Inna Forostiuk

In the paper, the hydrodynamics of the liquid-gas mixture in the mixing chamber of the ejectors at different spatial positions was analyzed and the comparative study of such ejectors was carried out. It was found that a more ordered mode of movement of the mixture in the mixing chamber is created as a result of the coincidence of the velocity vector of liquid drops and the direction of gravity in the vertical position of the ejectors. This leads to increasing the volume entrainment ratio almost twice. The analysis of the liquid-gas mixture flow in the mixing chamber, evaluation calculations and research allowed to develop and to patent a jet apparatus with a conical-cylindrical (combined) mixing chamber. It was also found that for such ejectors, the volume entrainment ratio is 15–55% higher than for a jet apparatus with a cylindrical mixing chamber due to the reduction of the resistance of the passive flow into the mixing chamber and prevention of the formation of reverse-circulating flows. A study has been conducted on liquid-gas ejectors in the range of the main geometric parameter m (ratio of the mixing chamber area to the nozzle area) 9.4–126.5, which allowed to establish its rational values at which the maximum volume entrainment ratio is achieved (m = 25–40).


2021 ◽  
Vol 2119 (1) ◽  
pp. 012077
Author(s):  
A V Kokorin ◽  
A D Nazarov ◽  
A F Serov

Abstract This paper presents the results of an experimental study of the dynamics of evaporation of nanofluid droplets based on distilled water with a mass concentration of SiO2 nanoparticles of 0.1%, 0.5%, and 7% lying on a metal surface. The drop height was changed over time using original equipment, which is based on an integrated approach to the combined use of capacitive and optical recording methods. The experimental results show that the change in the height of nanofluid droplets with concentrations of 0.1%, 0.5%, and 7% is linear over the main part of the evaporation time interval. A deviation from the linear law is observed at the final stage, at the time interval of complete evaporation. The time for complete evaporation of droplets of nanofluids with a concentration of 0.1% increases by 20%, for droplets with a concentration of 0.5%, it increased by 28% in comparison with the evaporation of droplets of the base liquid. The particle concentration of 7% does not lead to an increase in the evaporation time of droplets in comparison with the evaporation of low concentration droplets. Before the formation of a jelly-like residue of nanoparticles, the evaporation rate of droplets with a particle concentration of 7% is comparable to the evaporation rate of droplets with a concentration of 0.1%.


2021 ◽  
pp. 53-57
Author(s):  
Mariya Vil’dyaeva ◽  
Elina Makarova ◽  
Evgenii Klimanov ◽  
Aleksei Lyalikov ◽  
Vladislav Malygin

Using optical microscopy, SEM, atomic force microscope and profilometer, the shape, size and impurity composition of local defects occurring in the silicon dioxide layer during phosphorus diffusion were determined. The reason for the formation of defects in the passivating oxide during phosphorus diffusion is the local melting of SiO2 in interaction with liquid drops of phosphoric-silicate glass. A decrease in the temperature of the phosphorus deposition process and the concentration of POCL3 in the gas stream leads to a decrease in the density of oxide defects.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sun Sanxiang ◽  
Zhang Yunxia ◽  
Lei Pengshui

This research aims to unfold the mass exchange mechanism of water and soil on the soil surface in the rainfall splash erosion process. We regard the rainfall splash erosion process as a collision process between the raindrop and the soil particle on the soil interface. This recognition allows us to incorporate research approaches from the spring vibrator model, which has been developed for simulating the impact of liquid drops on solid surface. We further argue that because a same set of factors determine the splash amount and infiltration amount and it is relatively simpler to observe the infiltration amount, an investigation into the relationship between the splash amount and infiltration amount would be able to provide a new channel for quantifying the splash erosion. This recognition leads us to examining the relationship between single raindrop, rainfall kinetic energy and splash erosion from both theoretical and empirical angles, with an emphasis on the relationship between the infiltration amount and the splash erosion. Such an investigation would add value to the collective effort to establish mass exchange law in water-soil interface during rainfall splash erosion. It is found that during the rainfall splash process, the splash erosion is proportional to the rainfall kinetic energy; and has a linear relation to the infiltration amount, with the rainfall intensity as one of important parameters and the slope depending on the unit conversation of the infiltration amount and the splash erosion. If the units of two items are same, the slope is the ratio of the soil and water density, and the splash erosion velocity of the rainfall is half of the rainfall terminal velocity. The single raindrop kinetic energy and the splash erosion have a quadratic parabola relation, and the splash velocity is about 1/3 of single raindrop terminal velocity.


2021 ◽  
Vol 14 (11) ◽  
pp. 7079-7101
Author(s):  
Rachel Atlas ◽  
Johannes Mohrmann ◽  
Joseph Finlon ◽  
Jeremy Lu ◽  
Ian Hsiao ◽  
...  

Abstract. Mixed-phase Southern Ocean clouds are challenging to simulate, and their representation in climate models is an important control on climate sensitivity. In particular, the amount of supercooled water and frozen mass that they contain in the present climate is a predictor of their planetary feedback in a warming climate. The recent Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) vastly increased the amount of in situ data available from mixed-phase Southern Ocean clouds useful for model evaluation. Bulk measurements distinguishing liquid and ice water content are not available from SOCRATES, so single-particle phase classifications from the Two-Dimensional Stereo (2D-S) probe are invaluable for quantifying mixed-phase cloud properties. Motivated by the presence of large biases in existing phase discrimination algorithms, we develop a novel technique for single-particle phase classification of binary 2D-S images using a random forest algorithm, which we refer to as the University of Washington Ice–Liquid Discriminator (UWILD). UWILD uses 14 parameters computed from binary image data, as well as particle inter-arrival time, to predict phase. We use liquid-only and ice-dominated time periods within the SOCRATES dataset as training and testing data. This novel approach to model training avoids major pitfalls associated with using manually labeled data, including reduced model generalizability and high labor costs. We find that UWILD is well calibrated and has an overall accuracy of 95 % compared to 72 % and 79 % for two existing phase classification algorithms that we compare it with. UWILD improves classifications of small ice crystals and large liquid drops in particular and has more flexibility than the other algorithms to identify both liquid-dominated and ice-dominated regions within the SOCRATES dataset. UWILD misclassifies a small percentage of large liquid drops as ice. Such misclassified particles are typically associated with model confidence below 75 % and can easily be filtered out of the dataset. UWILD phase classifications show that particles with area-equivalent diameter (Deq)  < 0.17 mm are mostly liquid at all temperatures sampled, down to −40 ∘C. Larger particles (Deq>0.17 mm) are predominantly frozen at all temperatures below 0 ∘C. Between 0 and 5 ∘C, there are roughly equal numbers of frozen and liquid mid-sized particles (0.17<Deq<0.33 mm), and larger particles (Deq>0.33 mm) are mostly frozen. We also use UWILD's phase classifications to estimate sub-1 Hz phase heterogeneity, and we show examples of meter-scale cloud phase heterogeneity in the SOCRATES dataset.


2021 ◽  
Vol 62 (10) ◽  
Author(s):  
Mark Gloerfeld ◽  
Ilia V. Roisman ◽  
Jeanette Hussong ◽  
Cameron Tropea

AbstractThe mass of liquid remaining on a substrate following a drop impact is a crucial quantity for modelling of numerous phenomena, e.g. spray cooling, spray coating or aircraft icing. In the present study, a method to measure this residual mass after impact of liquid drops is introduced. This method is also applicable to supercooled drops, which may freeze upon impact on cold surfaces. Using the data obtained from extensive measurements in which the size, impact speed and temperature of the drops was varied, a modelling of the residual mass is formulated, following closely the theory of Riboux and Gordillo (Phys Rev Lett 113(2):024507, 2014. 10.1103/PhysRevLett.113.024507). A key adaptation of this model accounts for the deformation of drops immediately prior to impact. This modified theoretical model results in very good agreement with experiments, allowing prediction of residual mass for a given impact situation. Graphical abstract


Author(s):  
Xiaofeng Jiang ◽  
Shixing Chen ◽  
Enle Xu ◽  
Xianliang Meng ◽  
Guoguang Wu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nastasia V. Kosheleva ◽  
Yuri M. Efremov ◽  
Boris S. Shavkuta ◽  
Irina M. Zurina ◽  
Deying Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document