Overturning of nonlinear acoustic waves. Part 1 A general method

1993 ◽  
Vol 252 ◽  
pp. 585-599 ◽  
Author(s):  
P. W. Hammerton ◽  
D. G. Crighton

We consider model nonlinear wave equations of the form ut + uux = [Hscr ](x,t;u, ux,…) arising in gasdynamics and other fields, [Hscr ] incorporating various linear mechanisms of dissipation and dispersion. If [Hscr ] includes a thermoviscous dissipation term ∈uxx, then it is generally believed that u(x,t) will remain single-valued for all t > 0 and all single-valued u(x, 0), for any ∈ > 0. The question addressed here is whether, if thermoviscous dissipation is excluded from [Hscr ], u(x, t) remains single-valued for all t > 0, or whether certain dissipative-dispersive mechanisms (such as relaxation processes) are in themselves insufficient to prevent wave overturning. To answer this we propose a numerical scheme based on the use of intrinsic coordinates ψ = ψ(s, t) to describe the waveform at each time. In this paper, the method is described and validated by comparisons with the exact solutions for certain [Hscr ] ([Hscr ] = 0, [Hscr ] = -αu, [Hscr ] = ∈uxx). These comparisons show that the scheme is free of numerical viscosity effects which preclude the solution of the problem by finite-difference or spectral methods applied to the signal u(x, t), that it can reliably distinguish between finite-time overturning and merely the formation of steep gradients, and that it can accurately predict the time of overturning when it does occur. Having established the validity of the method, attention can then be turned to those cases where criteria for overturning have not as yet been determined by conventional methods. In Part 2, harmonic wave propagation through a relaxing gas is investigated.

2002 ◽  
Vol 456 ◽  
pp. 377-409 ◽  
Author(s):  
N. SUGIMOTO ◽  
K. TSUJIMOTO

This paper considers nonlinear acoustic waves propagating unidirectionally in a gas-filled tube under an axial temperature gradient, and examines whether the energy flux of the waves can be amplified by thermoacoustic effects. An array of Helmholtz resonators is connected to the tube axially to avoid shock formation which would otherwise give rise to nonlinear damping of the energy flux. The amplification is expected to be caused by action of the boundary layer doing reverse work, in the presence of the temperature gradient, on the acoustic main flow outside the boundary layer. By the linear theory, the velocity at the edge of the boundary layer is given in terms of the fractional derivatives of the axial velocity of the gas in the acoustic main flow. It is clearly seen how the temperature gradient controls the velocity at the edge. The velocity is almost in phase with the heat flux into the boundary layer from the wall. With effects of both the boundary layer and the array of resonators taken into account, nonlinear wave equations for unidirectional propagation in the tube are derived. Assuming a constant temperature gradient along the tube, the evolution of compression pulses is solved numerically by imposing the initial profiles of both an acoustic solitary wave and of a square pulse. It is revealed that when a positive gradient is imposed, the excess pressure decreases while the particle velocity increases and that the total energy flux can indeed be amplified if the gradient is suitable.


1991 ◽  
Vol 46 (1) ◽  
pp. 15-27 ◽  
Author(s):  
N. F. Cramer

The problem of nonlinear surface Alfvén waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schrödinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field.


1993 ◽  
Vol 252 ◽  
pp. 601-615 ◽  
Author(s):  
P. W. Hammerton ◽  
D. G. Crighton

We consider finite-amplitude acoustic disturbances propagating through media in which relaxation mechanisms, such as those associated with the vibration of polyatomic molecules, are significant. While the effect of these relaxation modes is to inhibit the wave steepening associated with nonlinearity, whether a particular mode is sufficient to prevent the occurrence of multi-valued solutions will depend on the form of the disturbance and on the characteristic parameters of the relaxation. Analysis of this condition is necessary in order to reveal which physical mechanisms actually determine the evolution of the wave profile. This then dictates the scaling of any embedded shock regions. Sufficient conditions for the occurrence of multi-valued solutions are obtained analytically for periodic waves, hence proving that in certain circumstances relaxation is in fact insufficient in fully describing the wave propagation. A much more precise criterion is then obtained numerically. This uses the techniques described in Part 1 for analysing the phenomenon of wave overturning using intrinsic coordinates. Illustrations are provided of the development of a harmonic signal for different classes of material parameters.


2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


Author(s):  
Wei Tan ◽  
Zhao-Yang Yin

Abstract The parameter limit method on the basis of Hirota’s bilinear method is proposed to construct the rogue wave solutions for nonlinear partial differential equations (NLPDEs). Some real and complex differential equations are used as concrete examples to illustrate the effectiveness and correctness of the described method. The rogue waves and homoclinic solutions of different structures are obtained and simulated by three-dimensional graphics, respectively. More importantly, we find that rogue wave solutions and homoclinic solutions appear in pairs. That is to say, for some NLPDEs, if there is a homoclinic solution, then there must be a rogue wave solution. The twin phenomenon of rogue wave solutions and homoclinic solutions of a class of NLPDEs is discussed.


Author(s):  
Rainer Mandel

AbstractIn this note we prove that the sine-Gordon breather is the only quasimonochromatic breather in the context of nonlinear wave equations in $$\mathbb {R}^N$$ R N .


Sign in / Sign up

Export Citation Format

Share Document