relaxation modes
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 14)

H-INDEX

24
(FIVE YEARS 3)

AIP Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 095222
Author(s):  
Takatoshi Yaoita ◽  
Seiji Inaba
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naoya Yanagisawa ◽  
Rei Kurita

AbstractFoams can be ubiquitously observed in nature and in industrial products. Despite the relevance of their properties to deformation, fluidity, and collapse, all of which are essential for applications, there are few experimental studies of collective relaxation dynamics in a wet foam. Here, we directly observe how the relaxation dynamics changes with increasing liquid fraction in both monodisperse and polydisperse two-dimensional foams. As we increase the liquid fraction, we quantitatively characterize the slowing-down of the relaxation, and the increase of the correlation length. We also find two different relaxation modes which depend on the size distribution of the bubbles. It suggests that the bubbles which are simply near to each other play an important role in large rearrangements, not just those in direct contact. Finally, we confirm the generality of our experimental findings by a numerical simulation for the relaxation process of wet foams.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 294
Author(s):  
Helena Švajdlenková ◽  
Ondrej Šauša ◽  
Sergey V. Adichtchev ◽  
Nikolay V. Surovtsev ◽  
Vladimir N. Novikov ◽  
...  

We report on the reorientation dynamics of small spin probe 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) in cis-1,4-poly(isoprene) (cis-1,4-PIP10k) from electron spin resonance (ESR) and the free volume of cis-1,4-PIP10k from positron annihilation lifetime spectroscopy (PALS) in relation to the high-frequency relaxations of cis-1,4-PIP10k using light scattering (LS) as well as to the slow and fast processes from broadband dielectric spectroscopy (BDS) and neutron scattering (NS). The hyperfine coupling constant, 2Azz′(T), and the correlation times, τc(T), of cis-1,4-PIP10k/TEMPO system as a function of temperature exhibit several regions of the distinct spin probe TEMPO dynamics over a wide temperature range from 100 K up to 350 K. The characteristic ESR temperatures of changes in the spin probe dynamics in cis-1,4-PIP10k/TEMPO system are closely related to the characteristic PALS ones reflecting changes in the free volume expansion from PALS measurement. Finally, the time scales of the slow and fast dynamics of TEMPO in cis-1,4-PIP10k are compared with all of the six known slow and fast relaxation modes from BDS, LS and NS techniques with the aim to discuss the controlling factors of the spin probe reorientation mobility in polymer, oligomer and small molecular organic glass-formers.


2020 ◽  
pp. 1-3
Author(s):  
Malika MADANI ◽  
◽  
Bachir OUARI ◽  

The Magnetic Susceptibility of an individual Super-Paramagnetic nanoparticle in a presence of DC Oblique magnetic fields of arbitrary amplitude is investigated using Brown’s continuous diffusion model. The susceptibility is calculated and compared when for extensive ranges of the anisotropy, the dc magnetic fields in the very low damping with Matrix continued Fraction. It is shown that the shape of the Spectrum of Super-Paramagnetic nanoparticles is substantially altered by applying a dc oblique field. There is also an inherent geometric dependence of the complex susceptibility on the damping parameter arising from coupling of longitudinal and transverse relaxation modes


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1495 ◽  
Author(s):  
Loan Trinh Che ◽  
Marianne Hiorth ◽  
Richard Hoogenboom ◽  
Anna-Lena Kjøniksen

The effect of polymer concentration on the temperature-induced self-association of a block copolymer comprising a poly(2-ethyl-2-oxazoline) block and a random copolymer block consisting of 2-ethyl-2-oxazoline and 2-n-propyl-2-oxazoline (PEtO80-block-P(EtOxx-stat-PropO40-x) with x = 0, 4, or 8 were investigated by dynamic light scattering (DLS) and transmittance measurements (turbidimetry). The polymers reveal a complex aggregation behavior with up to three relaxation modes in the DLS data and with a transmittance that first goes through a minimum before it declines at high temperatures. At low temperatures, unassociated polymer chains were found to co-exist with larger aggregates. As the temperature is increased, enhanced association and contraction of the aggregates results in a drop of the transmittance values. The aggregates fragment into smaller micellar-like clusters when the temperature is raised further, causing the samples to become optically clear again. At high temperatures, the polymers aggregate into large compact clusters, and the samples become turbid. Interestingly, very large aggregates were observed at low temperatures when the polymer concentrations were low. The formation of these aggregates was also promoted by a more hydrophilic copolymer structure. The formation of large aggregates with an open structure at conditions where the solvent conditions are improved is probably caused by depletion flocculation of the smaller aggregates.


2020 ◽  
Vol 56 (49) ◽  
pp. 6711-6714
Author(s):  
Indrani Bhowmick ◽  
David W. Shaffer ◽  
Jenny Y. Yang ◽  
Matthew P. Shores

First reports of a square planar S = 1/2 Co(ii) single molecule magnet, and spin state assignment to the multiple relaxation modes of a structurally related spin crossover Co(ii) complex.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Laura Bernard ◽  
Vitor Cardoso ◽  
Taishi Ikeda ◽  
Miguel Zilhão

Sign in / Sign up

Export Citation Format

Share Document