Coherent structures in rotating three-dimensional turbulence

1994 ◽  
Vol 273 ◽  
pp. 1-29 ◽  
Author(s):  
Peter Bartello ◽  
Olivier Métais ◽  
Marcel Lesieur

Numerical simulations investigating the formation and stability of quasi-two-dimensional coherent vortices in rotating homogeneous three-dimensional flow are described. In a numerical study of shear flows Lesieur, Yanase & Métais (1991) found that cyclones (respectively anticyclones) with |ω2D| ∼ O(2Ω), where ω2D is the vorticity and Ω is the rotation rate, are stabilized (respectively destabilized) by the rotation. A study of triply periodic pseudo-spectral simulations (643) was undertaken in order to investigate the vorticity asymmetry in homogeneous turbulence. Specifically, we examine (i) the possible three-dimensionalization of initially two-dimensional vortices and (ii) the emergence of quasi-two-dimensional structures in initially-isotropic three-dimensional turbulence. Direct numerical simulations of the Navier—Stokes equations are compared with large-eddy simulations employing a subgridscale model based on the second-order velocity structure function evaluated at the grid separation and with simulations employing hyperviscosity.Isolated coherent two-dimensional vortices, obtained from a two-dimensional decay simulation, were superposed with a low-amplitude three-dimensional perturbation, and used to initialize the first set of simulations. With Ω = 0, a three-dimensionalization of all vortices was observed. This occurred first in the small scales in conjunction with the formation of longitudinal hairpin vortices with vorticity perpendicular to that of the initial quasi-two-dimensional flow. In agreement with centrifugal stability arguments, when 2Ω = [ω2D]rms a rapid destabilization of anticyclones was observed to occur, whereas the initial two-dimensional cyclonic vortices persisted throughout the simulation. At larger Ω, both cyclones and anticyclones remained two-dimensional, consistent with the Taylor—Proudman theorem. A second set of simulations starting from isotropic three-dimensional fields was initialized by allowing a random velocity field to evolve (Ω = 0) until maximum energy dissipation. When the simulations were continued with 2Ω = [ω · Ω]rms/Ω, the three-dimensional flow was observed to organize into two-dimensional cyclonic vortices. At larger Ω, two-dimensional anticyclones also emerged from the initially-isotropic flow. The consequences for a variety of industrial and geophysical applications are clear. For quasi-two-dimensional eddies whose characteristic circulation times are of the order ofder of Ω−1, rotation induces a complete disruption of anticyclonic vortices, while stabilizing cyclonic ones.

Author(s):  
Sofia Peppa ◽  
Lambros Kaiktsis ◽  
Christos Frouzakis ◽  
George Triantafyllou

DNS results are presented for three-dimensional flow past a circular cylinder forced to oscillate both in the transverse and in-line direction with respect to a uniform stream, at Reynolds number equal to 400, and are compared against simulation results for two-dimensional flow. The cylinder follows a figure-eight motion, traversed either counter-clockwise or clockwise in the upper half-plane for a flow stream from left to right. The transverse oscillation frequency is equal to the natural frequency of the Kármán vortex street. The Navier-Stokes equations are solved using a spectral element code, and the forces acting on the cylinder are computed for both three- and two-dimensional flow. The results demonstrate that the effect of cylinder oscillation on the flow structure and forces differs substantially between the counter-clockwise and the clockwise oscillation mode. For the counter-clockwise mode, forcing at low amplitude decreases the flow three-dimensionality, with the wake becoming increasingly three-dimensional for transverse oscillation amplitudes higher than 0.25–0.30 cylinder diameters, with corresponding discrepancies in forces with respect to two-dimensional flow. For the case of clockwise mode, a strong stabilizing effect is found: the wake becomes two-dimensional for a transverse oscillation amplitude of 0.20 cylinder diameters, and remains so at higher amplitudes, resulting in nearly equal values of the force coefficients for three- and two-dimensional flow.


2017 ◽  
Vol 826 ◽  
pp. 302-334 ◽  
Author(s):  
Francesco Romanò ◽  
Stefan Albensoeder ◽  
Hendrik C. Kuhlmann

The structure of the incompressible steady three-dimensional flow in a two-sided anti-symmetrically lid-driven cavity is investigated for an aspect ratio $\unicode[STIX]{x1D6E4}=1.7$ and spanwise-periodic boundary conditions. Flow fields are computed by solving the Navier–Stokes equations with a fully spectral method on $128^{3}$ grid points utilizing second-order asymptotic solutions near the singular corners. The supercritical flow arises in the form of steady rectangular convection cells within which the flow is point symmetric with respect to the cell centre. Global streamline chaos occupying the whole domain is found immediately above the threshold to three-dimensional flow. Beyond a certain Reynolds number the chaotic sea recedes from the interior, giving way to regular islands. The regular Kolmogorov–Arnold–Moser tori grow with increasing Reynolds number before they shrink again to eventually vanish completely. The global chaos at onset is traced back to the existence of one hyperbolic and two elliptic periodic lines in the basic flow. The singular points of the three-dimensional flow which emerge from the periodic lines quickly change such that, for a wide range of supercritical Reynolds number, each periodic convection cell houses a double spiralling-in saddle focus in its centre, a spiralling-out saddle focus on each of the two cell boundaries and two types of saddle limit cycle on the walls. A representative analysis for $\mathit{Re}=500$ shows chaotic streamlines to be due to chaotic tangling of the two-dimensional stable manifold of the central spiralling-in saddle focus and the two-dimensional unstable manifold of the central wall limit cycle. Embedded Kolmogorov–Arnold–Moser tori and the associated closed streamlines are computed for several supercritical Reynolds numbers owing to their importance for particle transport.


1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


2017 ◽  
Vol 825 ◽  
pp. 631-650 ◽  
Author(s):  
Francesco Romanò ◽  
Arash Hajisharifi ◽  
Hendrik C. Kuhlmann

The topology of the incompressible steady three-dimensional flow in a partially filled cylindrical rotating drum, infinitely extended along its axis, is investigated numerically for a ratio of pool depth to radius of 0.2. In the limit of vanishing Froude and capillary numbers, the liquid–gas interface remains flat and the two-dimensional flow becomes unstable to steady three-dimensional convection cells. The Lagrangian transport in the cellular flow is organised by periodic spiralling-in and spiralling-out saddle foci, and by saddle limit cycles. Chaotic advection is caused by a breakup of a degenerate heteroclinic connection between the two saddle foci when the flow becomes three-dimensional. On increasing the Reynolds number, chaotic streamlines invade the cells from the cell boundary and from the interior along the broken heteroclinic connection. This trend is made evident by computing the Kolmogorov–Arnold–Moser tori for five supercritical Reynolds numbers.


2020 ◽  
Vol 407 ◽  
pp. 109239
Author(s):  
José Miguel Pérez ◽  
Soledad Le Clainche ◽  
José Manuel Vega

1968 ◽  
Vol 72 (686) ◽  
pp. 171-177 ◽  
Author(s):  
John H. Neilson ◽  
Alastair Gilchrist ◽  
Chee K. Lee

This work deals with theoretical aspects of thrust vector control in rocket nozzles by the injection of secondary gas into the supersonic region of the nozzle. The work is concerned mainly with two-dimensional flow, though some aspects of three-dimensional flow in axisymmetric nozzles are considered. The subject matter is divided into three parts. In Part I, the side force produced when a physical wedge is placed into the exit of a two-dimensional nozzle is considered. In Parts 2 and 3, the physical wedge is replaced by a wedge-shaped “dead water” region produced by the separation of the boundary layer upstream of a secondary injection port. The modifications which then have to be made to the theoretical relationships, given in Part 1, are enumerated. Theoretical relationships for side force, thrust augmentation and magnification parameter for two- and three-dimensional flow are given for secondary injection normal to the main nozzle axis. In addition, the advantages to be gained by secondary injection in an upstream direction are clearly illustrated. The theoretical results are compared with experimental work and a comparison is made with the theories of other workers.


Sign in / Sign up

Export Citation Format

Share Document