scholarly journals Nonlinear energy transfer to short gravity waves in the presence of long waves

1995 ◽  
Vol 289 ◽  
pp. 199-226 ◽  
Author(s):  
H. S. Ölmez ◽  
J. H. Milgram

Existing theories for calculating the energy transfer rates to gravity waves due to resonant nonlinear interactions among wave components whose lengths are long in comparison to wave elevations have been verified experimentally and are well accepted. There is uncertainty, however, about prediction of energy transfer rates within a set of waves having short to moderate lengths when these are present simultaneously with a long wave whose amplitude is not small in comparison to the short wavelengths. Here we implement both a direct numerical method that avoids small-amplitude approximations and a spectral method which includes perturbations of high order. These are applied to an interacting set of short- to intermediate-length waves with and without the presence of a large long wave. The same cases are also studied experimentally. Experimentally and numerical results are in reasonable agreement with the finding that the long wave does influence the energy transfer rates. The physical reason for this is identified and the implications for computations of energy transfer to short waves in a wave spectrum are discussed.

2001 ◽  
Vol 444 ◽  
pp. 199-221 ◽  
Author(s):  
MITSUHIRO TANAKA

The temporal evolution of nonlinear wave fields of surface gravity waves is studied by large-scale direct numerical simulations of primitive equations in order to verify Hasselmann's theory for nonlinear energy transfer among component gravity waves. In the simulations, all the nonlinear interactions, including both resonant and non-resonant ones, are taken into account up to the four-wave processes. The initial wave field is constructed by combining more than two million component free waves in such a way that it has the JONSWAP or the Pierson–Moskowitz spectrum. The nonlinear energy transfer is evaluated from the rate of change of the spectrum, and is compared with Hasselmann's theory. It is shown that, in spite of apparently insufficient duration of the simulations such as just a few tens of characteristic periods, the energy transfer obtained by the present method shows satisfactory agreement with Hasselmann's theory, at least in their qualitative features.


1976 ◽  
Vol 74 (2) ◽  
pp. 375-399 ◽  
Author(s):  
Dirk J. Olbers

The source function describing the energy transfer between the components of the internal wave spectrum due to nonlinear interactions is derived from the Lagrangian of the fluid motion and evaluated numerically for the spectral models of Garrett & Munk (1972a, 1975). The characteristic time scales of the transfer are found to be typically of the order of some days, so that nonlinear interactions will play an important role in the energy balance of the wave field. Thus implications of the nonlinear transfer within the spectrum for generation and dissipation processes are considered.


Sign in / Sign up

Export Citation Format

Share Document