Nonlinear Energy Transfer between Random Gravity Waves

Author(s):  
Akira Masuda
2001 ◽  
Vol 444 ◽  
pp. 199-221 ◽  
Author(s):  
MITSUHIRO TANAKA

The temporal evolution of nonlinear wave fields of surface gravity waves is studied by large-scale direct numerical simulations of primitive equations in order to verify Hasselmann's theory for nonlinear energy transfer among component gravity waves. In the simulations, all the nonlinear interactions, including both resonant and non-resonant ones, are taken into account up to the four-wave processes. The initial wave field is constructed by combining more than two million component free waves in such a way that it has the JONSWAP or the Pierson–Moskowitz spectrum. The nonlinear energy transfer is evaluated from the rate of change of the spectrum, and is compared with Hasselmann's theory. It is shown that, in spite of apparently insufficient duration of the simulations such as just a few tens of characteristic periods, the energy transfer obtained by the present method shows satisfactory agreement with Hasselmann's theory, at least in their qualitative features.


1995 ◽  
Vol 289 ◽  
pp. 199-226 ◽  
Author(s):  
H. S. Ölmez ◽  
J. H. Milgram

Existing theories for calculating the energy transfer rates to gravity waves due to resonant nonlinear interactions among wave components whose lengths are long in comparison to wave elevations have been verified experimentally and are well accepted. There is uncertainty, however, about prediction of energy transfer rates within a set of waves having short to moderate lengths when these are present simultaneously with a long wave whose amplitude is not small in comparison to the short wavelengths. Here we implement both a direct numerical method that avoids small-amplitude approximations and a spectral method which includes perturbations of high order. These are applied to an interacting set of short- to intermediate-length waves with and without the presence of a large long wave. The same cases are also studied experimentally. Experimentally and numerical results are in reasonable agreement with the finding that the long wave does influence the energy transfer rates. The physical reason for this is identified and the implications for computations of energy transfer to short waves in a wave spectrum are discussed.


2013 ◽  
Vol 8 (0) ◽  
pp. 2403070-2403070 ◽  
Author(s):  
Naohiro KASUYA ◽  
Satoru SUGITA ◽  
Makoto SASAKI ◽  
Shigeru INAGAKI ◽  
Masatoshi YAGI ◽  
...  

Author(s):  
Noriaki HASHIMOTO ◽  
Koji KAWAGUCHI ◽  
Katsuyuki SUZUYAMA ◽  
Masaru YAMASHIRO ◽  
Mitsuyoshi KODAMA

Author(s):  
K. Vorotnikov ◽  
M. Kovaleva ◽  
Y. Starosvetsky

In the present paper, we give a selective review of some very recent works concerning the non-stationary regimes emerging in various one- and two-dimensional models incorporating internal rotators. In one-dimensional models, these regimes are characterized by the intense energy transfer from the outer element, subjected to initial or harmonic excitation, to the internal rotator. As for the two-dimensional models (incorporating internal rotators), we will mainly focus on the two special dynamical states, namely a state of the near-complete energy transfer from longitudinal to lateral vibrations of the outer element as well as the state of a permanent, unidirectional energy locking with mild, spatial energy exchanges. In this review, we will discuss the recent theoretical and experimental advancements in the study of essentially nonlinear mechanisms governing the formation and bifurcations of the regimes of intense energy transfer. The present review is composed of two parts. The first part will be mainly devoted to the emergence of resonant energy transfer states in one-dimensional models incorporating internal rotators, while the second part will be mainly concerned with the manifestation of various energy transfer states in two-dimensional ones. This article is part of the theme issue ‘Nonlinear energy transfer in dynamical and acoustical systems’.


Author(s):  
L. Palatella ◽  
A. Di Lieto ◽  
P. Minguzzi ◽  
A. Toncelli ◽  
M. Tonelli

2005 ◽  
Vol 285 (1-2) ◽  
pp. 483-490 ◽  
Author(s):  
Stylianos Tsakirtzis ◽  
Gaetan Kerschen ◽  
Panagiotis N. Panagopoulos ◽  
Alexander F. Vakakis

Sign in / Sign up

Export Citation Format

Share Document