transfer integral
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 95 (1) ◽  
Author(s):  
F. Naha Nzoupe ◽  
Alain M. Dikandé ◽  
S. E. Mkam Tchouobiap

Abstract We consider a one-dimensional system of interacting particles (which can be atoms, molecules, ions, etc.), in which particles are subjected to a bistable potential the double-well shape of which is tunable via a shape deformability parameter. Our objective is to examine the impact of shape deformability on the order of transition in quantum tunneling in the bistable system, and on the possible existence of exact solutions to the transfer-integral operator associated with the partition function of the system. The bistable potential is represented by a class composed of three families of parametrized double-well potentials, whose minima and barrier height can be tuned distinctly. It is found that the extra degree of freedom, introduced by the shape deformability parameter, favors a first-order transition in quantum tunneling, in addition to the second-order transition predicted with the $$\phi ^4$$ ϕ 4 model. This first-order transition in quantum tunneling, which is consistent with Chudnovsky’s conjecture of the influence of the shape of the potential barrier on the order of thermally assisted transitions in bistable systems, is shown to occur at a critical value of the shape-deformability parameter which is the same for the three families of parametrized double-well potentials. Concerning the statistical mechanics of the system, the associate partition function is mapped onto a spectral problem by means of the transfer-integral formalism. The condition that the partition function can be exactly integrable, is determined by a criterion enabling exact eigenvalues and eigenfunctions for the transfer-integral operator. Analytical expressions of some of these exact eigenvalues and eigenfunctions are given, and the corresponding ground-state wavefunctions are used to compute the probability density which is relevant for calculations of thermodynamic quantities such as the correlation functions and the correlation lengths. Graphic Abstract


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 868
Author(s):  
Tomofumi Kadoya ◽  
Shiori Sugiura ◽  
Toshiki Higashino ◽  
Keishiro Tahara ◽  
Kazuya Kubo ◽  
...  

We report the structural and physical properties of a new organic Mott insulator (BEDT-BDT)AsF6 (BEDT-BDT: benzo[1,2-g:4,5-g′]bis(thieno[2,3-b][1,4dithiin). This AsF6 salt has the same structure as the PF6 salt. Although the anions are disordered, the donor molecules form a θ-type arrangement. The temperature dependence of the resistivity exhibits semiconducting behavior. The static magnetic susceptibility follows Curie–Weiss law over a wide temperature range; however, below 25 K, the magnetic susceptibility is in agreement with a one-dimensional chain model with the exchange coupling J = 7.4 K. No structural phase transition was observed down to 93 K. At 270 K, the Fermi surface calculated by the tight-binding approximation is a two-dimensional cylinder; however, it is significantly distorted at 93 K. This is because the dihedral angles between the BEDT-BDT molecules become larger due to lattice shrinkage at low temperatures, which results in a smaller transfer integral (t1) along the stack direction. This slight change in the dihedral angle gives rise to a significant change in the electronic structure of the AsF6 salt. Radical-cation salts using BEDT-BDT, in which the highest occupied molecular orbital does not have a dominant sign throughout the molecule, are sensitive to slight differences in the overlap between the molecules, and their electronic structures are more variable than those of conventional θ-type conductors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weitang Li ◽  
Jiajun Ren ◽  
Zhigang Shuai

AbstractThe nonlocal electron-phonon couplings in organic semiconductors responsible for the fluctuation of intermolecular transfer integrals has been the center of interest recently. Several irreconcilable scenarios coexist for the description of the nonlocal electron-phonon coupling, such as phonon-assisted transport, transient localization, and band-like transport. Through a nearly exact numerical study for the carrier mobility of the Holstein-Peierls model using the matrix product states approach, we locate the phonon-assisted transport, transient localization and band-like regimes as a function of the transfer integral (V) and the nonlocal electron-phonon couplings (ΔV), and their distinct transport behaviors are analyzed by carrier mobility, mean free path, optical conductivity and one-particle spectral function. We also identify an “intermediate regime” where none of the established pictures applies, and the generally perceived hopping regime is found to be at a very limited end in the proposed regime paradigm.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4119
Author(s):  
Gaetano Ricci ◽  
Sofia Canola ◽  
Yasi Dai ◽  
Daniele Fazzi ◽  
Fabrizia Negri

In this work, we investigate two recently synthesized naphthodithiophene diimide (NDTI) derivatives featuring promising n-type charge transport properties. We analyze the charge transport pathways and model charge mobility with the non-adiabatic hopping mechanism using the Marcus-Levich-Jortner rate constant formulation, highlighting the role of fluoroalkylated substitution in α (α-NDTI) and at the imide nitrogen (N-NDTI) position. In contrast with the experimental results, similar charge mobilities are computed for the two derivatives. However, while α-NDTI displays remarkably anisotropic mobilities with an almost one-dimensional directionality, N-NDTI sustains a more isotropic charge percolation pattern. We propose that the strong anisotropic charge transport character of α-NDTI is responsible for the modest measured charge mobility. In addition, when the role of thermally induced transfer integral fluctuations is investigated, the computed electron–phonon couplings for intermolecular sliding modes indicate that dynamic disorder effects are also more detrimental for the charge transport of α-NDTI than N-NDTI. The lower observed mobility of α-NDTI is therefore rationalized in terms of a prominent anisotropic character of the charge percolation pathways, with the additional contribution of dynamic disorder effects.


2021 ◽  
Vol 63 (9) ◽  
pp. 1355
Author(s):  
Е.Л. Спевак ◽  
Ю.Д. Панов ◽  
А.С. Москвин

We consider the inclusion of short-range correlations for a two-dimensional model of local bosons on a square lattice in the framework of the Bethe approximation for clusters of 2 and 4 sites. Explicit equations are obtained for determining the critical temperatures of charge and superfluid ordering and their solutions are considered for various ratios of the charge-charge correlation parameter and the transfer integral. It is shown that taking into account short-range correlations for temperatures of charge ordering leads to the appearance of a critical concentration of bosons, limiting the region of existence of solutions like charge ordering. For superfluid ordering, when short-range correlations are taken into account, the critical temperature is reduced down to zero values at half-filling. The phase diagram of the model of local bosons is constructed with allowance for phase separation within the framework of Maxwell's construction, and it is shown that taking into account short-range correlations in the Bethe approximation quantitatively approximates the form of the phase diagram to the results of the quantum Monte Carlo method.


2019 ◽  
Vol 5 (11) ◽  
pp. eaay0414 ◽  
Author(s):  
Meysam Heydari Gharahcheshmeh ◽  
Mohammad Mahdi Tavakoli ◽  
Edward F. Gleason ◽  
Maxwell T. Robinson ◽  
Jing Kong ◽  
...  

For semicrystalline poly(3,4-ethylene dioxythiophene) (PEDOT), oxidative chemical vapor deposition (oCVD) enables systematic control over the b-axis lattice parameter (π-π stacking distance). Decreasing the b-axis lattice parameter increases the charge transfer integral, thus enhancing intracrystallite mobility. To reduce the barrier to intercrystallite transport, oCVD conditions were tailored to produce pure face-on crystallite orientation rather than the more common edge-on orientation. The face-on oriented oCVD PEDOT with the lowest b-axis lattice parameter displayed the highest in-plane electrical conductivity (σdc = 2800 S/cm), largest optical bandgap (2.9 eV), and lowest degree of disorder as characterized by the Urbach band edge energy. With the single step oCVD process at growth conditions compatible with direct deposition onto flexible plastic substrates, the ratio σdc/σop reached 50. As compared to spun-cast PEDOT:polystyrene sulfonate, integration of oCVD PEDOT as a hole transport layer (HTL) improved both the power conversion efficiency (PCE) and shelf-life stability of inverted perovskite solar cells (PSC).


Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 787-797 ◽  
Author(s):  
Xiaolong Li ◽  
Yin Xiao ◽  
Shirong Wang ◽  
Yuhao Yang ◽  
Yongning Ma ◽  
...  

AbstractThe crystal form of semiconductor materials is keenly correlated with the photosensitivity of optoelectronic devices. Thus, understanding the crystal form-dependent photosensitivity mechanism is critical. In this work, the microemulsion phase transfer method was adopted to prepare α- and β-titanylphthalocyanine (TiOPc NPs) with an average diameter of 35 nm. The photosensitivity (E1/2) of α-TiOPc NPs was 2.73 times better than that of β-TiOPc NPs, which was characterized by photoconductors under the same measurement conditions. DFT was performed to explain the relationship between crystal form and photosensitivity by systematically calculating the charge transfer integrals for all possible dimers in the two different crystal forms. The hole and electron reorganization energies of TiOPc were respectively calculated to be 53.5 and 271.5 meV, revealing TiOPc to be a typical p-type semiconductor. The calculated total hole transfer mobility (μ+) ratio (2.83) of α- to β-TiOPc was almost identical to the experimental E1/2 ratio (2.73) and the calculated photogeneration quantum efficiency (ηe-h) ratio (2.23). In addition, the optimum hole transfer routes in the crystal of α- and β-TiOPc were all along with the [1 0 0] crystal orientation, which was determined by the calculated μ+. A high charge transfer mobility leads to a high photosensitive TiOPc crystal. Consequently, these results indicate that the selected theoretical calculation method is reasonable for indirectly explaining the relationship between crystal form and photosensitivity. The TiOPc molecular solid-state arrangements, namely, the crystal forms of TiOPc, have a strong influence on the charge transport behavior, which in turn, affects its photosensitivity.


2017 ◽  
Vol 19 (46) ◽  
pp. 31007-31010 ◽  
Author(s):  
Lluís Blancafort ◽  
Alexander A. Voityuk

A simple approach to estimate the electronic coupling for photoinduced charge separation in materials and biomolecules is proposed.


Author(s):  
Christopher J. Collison ◽  
Chenyu Zheng ◽  
Nicholas J. Hestand ◽  
Ishita Jalan ◽  
Jeremy A. Cody ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document