oscillation frequencies
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 115)

H-INDEX

36
(FIVE YEARS 6)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
José C. Jiménez ◽  
Eduardo S. Fraga

We investigated compact stars consisting of cold quark matter and fermionic dark matter treated as two admixed fluids. We computed the stellar structures and fundamental radial oscillation frequencies of different masses of the dark fermion in the cases of weak and strong self-interacting dark matter. We found that the fundamental frequency can be dramatically modified and, in some cases, stable dark strange planets and dark strangelets with very low masses and radii can be formed.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8418
Author(s):  
Paweł Piskur ◽  
Piotr Szymak ◽  
Michał Przybylski ◽  
Krzysztof Naus ◽  
Krzysztof Jaskólski ◽  
...  

This article covers research on an innovative propulsion system design for a Biomimetic Unmanned Underwater Vehicle (BUUV) operating at low speeds. The experiment was conducted on a laboratory test water tunnel equipped with specialised sensor equipment to assess the Fluid-Structure Interaction (FSI) and energy consumption of two different types of propulsion systems. The experimental data contrast the undulating with the drag-based propulsion system. The additional joint in the drag-based propulsion system is intended to increase thrust and decrease energy input. The tests were conducted at a variety of fins oscillation frequencies and fluid velocities. The experiments demonstrate that, in the region of low-speed forward movement, the efficiency of the propulsion system with the additional joint is greater.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012206
Author(s):  
I E Lysenko ◽  
D Y Sevostyanov ◽  
N F Kidyaev ◽  
A V Kovalev

Abstract In this paper, an original design of a micromechanical gyroscope-accelerometer is proposed. A parametrizable geometric and finite element model of a micromechanical device is presented. The dynamic characteristics of the structure are studied and the dependences of the natural oscillation frequencies on the geometric parameters of the gyroscope-accelerometer are obtained.


Wind ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 63-76
Author(s):  
Aaron French ◽  
Wilhelm Friess ◽  
Andrew Goupee ◽  
Keith Berube

The study of unsteady aerodynamic phenomena in wind tunnels is supported by gust-generating devices capable of generating adjustable magnitude and periodicity velocity fluctuations in a flowfield. Gusts are typically generated actively by introducing moving vanes to direct the flow, or passively by tailoring the boundary layer growth and shape in the tunnel. The flow facility used here is a student-built closed-return low-speed wind tunnel, with a test section size of 750 mm × 750 mm and a maximum speed of 25 m/s. A two-vane gust generator utilizing NACA0018 airfoil sections of 150 mm chord length was designed and installed upstream of the test section. The flowfield was mapped with the installed vanes with and without gust actuation, utilizing a hot wire system. The tunnel with gust vanes exhibits a spatially uniform baseline turbulence intensity of 5%, with a steady state velocity deficit of 1 m/s in the vane–wake region. Upon introducing the gusting conditions at vane deflection angles of up to ±45°, velocity differences of up to 4 m/s were attained at 18 m/s freestream velocity at oscillation frequencies ranging between 1 Hz and 2 Hz.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012037
Author(s):  
KN Proskuryakov ◽  
AV Anikeev

Abstract Methods and algorithms for calculating the frequency of self-oscillations in swirling coolant flows of nuclear power plants with VVER reactors have been developed. The frequency of self-oscillations occurring in the acoustic sections of the primary circuit and their connections in the starting modes of the power unit and when operating at the rated power level is predicted. It is established that the self-oscillation frequencies can fall into the frequency bandwidth of mechanical vibrations and vibrations of the reactor plant’s internal devices. It is shown that in order to prevent the resonance of self-oscillations of the coolant with the vibration frequencies of internal devices, it is necessary and sufficient to take the frequency of self-oscillations outside the bandwidth of the vibration frequency of structures. The results of verification of the results of forecasting the frequency of self-oscillations in swirling coolant flows at a nuclear power plant unit with VVER are presented. The application of the developed technique shows that the pendulum oscillations of the VVER - 1200 body are caused by an increase in the parameters of the coolant and the geometric dimensions of the VVER - 1200 reactor compared to VVER-1000.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abderrahim Serrar ◽  
Mohamed El Khlifi ◽  
Azeddine Kourta

Purpose The purpose of this study is to compare two unsteady actuators: an oscillator and a sweeping jet. Both actuators can produce an oscillating jet of different amplitudes and frequencies without any moving parts, making them an attractive actuator concept. The Coanda effect phenomenon can explain the operating principles of these two unsteady actuators. Design/methodology/approach A numerical study was conducted to compare the amplitudes and frequencies of fluidic and sweeping jet (SJ) oscillators to obtain an efficient actuator to control separated flows at high Reynolds numbers. For this goal, two-dimensional unsteady Reynolds-averaged Navier-Stokes simulations were carried out using computational fluid dynamics (CFD) fluent code to evaluate the actuator performances. The discrete fast Fourier transform method determined the oscillation frequencies. Findings The oscillation frequencies gradually increase as the inlet pressure increases. The characteristics and dimensions of the vortices produced in the mixing chamber and feedback loops vary overtime when the injected fluid is swept sideways. The frequencies supplied by the SJ are stronger than those obtained by the fluidic oscillator, which may contribute to improving the aerodynamic performance at a lower power supply cost. Originality/value The existence of the splitter in the fluidic oscillator led to the production of separate pulses, which would be useful in various industrial applications, including active control of combustion and mixing processes while other applications such as flow separation control require SJs. With the latter actuator higher and interesting frequencies can be obtained, leading to efficient flow control.


Author(s):  
Callum W Fairbairn ◽  
Gordon I Ogilvie

Abstract Observations of distorted discs have highlighted the ubiquity of warps in a variety of astrophysical contexts. This has been complemented by theoretical efforts to understand the dynamics of warp evolution. Despite significant efforts to understand the dynamics of warped discs, previous work fails to address arguably the most prevalent regime – nonlinear warps in Keplerian discs for which there is a resonance between the orbital, epicyclic and vertical oscillation frequencies. In this work, we implement a novel nonlinear ring model, developed recently by Fairbairn and Ogilvie, as a framework for understanding such resonant warp dynamics. Here we uncover two distinct nonlinear regimes as the warp amplitude is increased. Initially we find a smooth modulation theory which describes warp evolution in terms of the averaged Lagrangian of the oscillatory vertical motions of the disc. This hints towards the possibility of connecting previous warp theory under a generalised secular framework. Upon the warp amplitude exceeding a critical value, which scales as the square root of the aspect-ratio of our ring, the disc enters into a bouncing regime with extreme vertical compressions twice per orbit. We develop an impulsive theory which predicts special retrograde and prograde precessing warped solutions, which are identified numerically using our full equation set. Such solutions emphasise the essential activation of nonlinear vertical oscillations within the disc and may have important implications for energy and warp dissipation. Future work should search for this behaviour in detailed numerical studies of the internal flow structure of warped discs.


2021 ◽  
Vol 67 (9) ◽  
pp. 421-432
Author(s):  
Almatbek Kydyrbekuly ◽  
Gulama-Garip Alisher Ibrayev ◽  
Tangat Ospan ◽  
Anatolij Nikonov

A method for calculating amplitudes and constructing frequency characteristics of forced and self-excited vibrations of a rotor-fluid-foundation system on rolling bearings with a non-linear characteristic based on the method of complex amplitudes and harmonic balance has been developed. Non-linear equations of motion of the rotor-fluid-foundation system are derived, and analytical methods of their solution are presented. Frequencies of fundamental and ultra-harmonic resonances are determined. The intervals between self-oscillation frequencies are estimated. The dependence of amplitudes on the amount of fluid in the rotor cavity, the mass of the foundation, linear imbalance, the value of the stiffness coefficient, and the damping coefficient is shown.


Author(s):  
Ezddin Hutli ◽  
Petar B. Petrović ◽  
Milos Nedeljkovic ◽  
David Legrady

AbstractIn a cavitating water jet, cavity clouds emerge and collapse with an unsteady, but periodic tendency where the frequencies depend on the working conditions. The presented work aims at examining and analyze the dynamic behavior and properties of the clouds under different circumstances. Computer vision and image processing were introduced as tools to define the cavitation clouds based on the Contour Recognition technique. A Canny operator and Otsu threshold fragmenting methods were used. The use of these methods allows for a better understanding of the cavitating jet clouds' behavior based on the pixel intensities and shows that for an arbitrary cloud the surface itself has a dynamic feature and depends on the cavity composition. The clouds' properties could be measured and correlated to the applied working conditions. Also, the oscillation frequencies of the area of the clouds could be determined. The analysis shows that the quality of the obtained results depends mainly on the input threshold values separating the foreground and background pixels. The difficulty of defining the threshold value is discussed in the paper, as well as the validity of using the Contour Recognition technique in this field.


Sign in / Sign up

Export Citation Format

Share Document