scholarly journals The Chemical Stratigraphy of Polar Ice Sheets — A Method of Dating Ice Cores

1981 ◽  
Vol 27 (95) ◽  
pp. 3-9 ◽  
Author(s):  
A. T. Wilson ◽  
C. H. Hendy

Abstract Studies of the chemical stratigraphy in the snow near Vostok station, which is near the centre of the East Antarctic ice sheet, show that sodium exhibits annual concentration differences of up to a factor of ten. Similar work on the 952 m Vostok ice core enabled accumulation rates along selected parts of the core to be determined. This in turn enables the core to be dated. The accumulation rate in this central region of the East Antarctic ice sheet for the last 50000 years has been determined and is presented. An interesting result is that the accumulation rate during the last glacial period is only half that in post-glacial times. Results from the bottom of the core provide some evidence of a past surge in the East Antarctic ice sheet.

1981 ◽  
Vol 27 (95) ◽  
pp. 3-9
Author(s):  
A. T. Wilson ◽  
C. H. Hendy

AbstractStudies of the chemical stratigraphy in the snow near Vostok station, which is near the centre of the East Antarctic ice sheet, show that sodium exhibits annual concentration differences of up to a factor of ten. Similar work on the 952 m Vostok ice core enabled accumulation rates along selected parts of the core to be determined. This in turn enables the core to be dated. The accumulation rate in this central region of the East Antarctic ice sheet for the last 50000 years has been determined and is presented. An interesting result is that the accumulation rate during the last glacial period is only half that in post-glacial times. Results from the bottom of the core provide some evidence of a past surge in the East Antarctic ice sheet.


1988 ◽  
Vol 11 ◽  
pp. 52-59 ◽  
Author(s):  
P. Huybrechts ◽  
J. Oerlemans

An efficient numerical ice-sheet model, including time dependence and full thermo-mechanical coupling, has been developed in order to investigate the thermal regime and overall configuration of a polar ice sheet with respect to changing environmental conditions. From basic sensitivity experiments, in which a schematic East Antarctic ice sheet is forced with a typical glacial–interglacial climatic shift, it is found that: (i) the mutual interaction of temperature and deformation has a stabilizing effect on its steady-state configuration; (ii) in the transient mode, this climatic transition initially leads to increased ice thickness due to enhanced accumulation, after which this trend is reversed due to a warmer base. Time-scales for this reversal are of the order of 103 years in marginal zones and of 104 years in interior regions; (iii) horizontal heat advection plays a major role in damping possible runaway behaviour due to the dissipation – strain-rate feed-back, suggesting that creep instability is a rather unlikely candidate to initiate surging of the East Antarctic ice sheet. The model is then applied to four East Antarctic flow lines. Only the flow line passing through Wilkes Land appears to be vulnerable to widespread basal melting, due to enhanced basal warming following climatic warming. Time-dependent modelling of the Vostok flow line indicates that the Vostok Station area has risen about 95 m since the beginning of the present interglacial due to thermo-mechanical effects, which is of particular interest in interpreting the palaeoclimatic signal of the ice core obtained there.


1988 ◽  
Vol 11 ◽  
pp. 52-59 ◽  
Author(s):  
P. Huybrechts ◽  
J. Oerlemans

An efficient numerical ice-sheet model, including time dependence and full thermo-mechanical coupling, has been developed in order to investigate the thermal regime and overall configuration of a polar ice sheet with respect to changing environmental conditions.From basic sensitivity experiments, in which a schematic East Antarctic ice sheet is forced with a typical glacial–interglacial climatic shift, it is found that: (i) the mutual interaction of temperature and deformation has a stabilizing effect on its steady-state configuration; (ii) in the transient mode, this climatic transition initially leads to increased ice thickness due to enhanced accumulation, after which this trend is reversed due to a warmer base. Time-scales for this reversal are of the order of 103 years in marginal zones and of 104 years in interior regions; (iii) horizontal heat advection plays a major role in damping possible runaway behaviour due to the dissipation – strain-rate feed-back, suggesting that creep instability is a rather unlikely candidate to initiate surging of the East Antarctic ice sheet.The model is then applied to four East Antarctic flow lines. Only the flow line passing through Wilkes Land appears to be vulnerable to widespread basal melting, due to enhanced basal warming following climatic warming. Time-dependent modelling of the Vostok flow line indicates that the Vostok Station area has risen about 95 m since the beginning of the present interglacial due to thermo-mechanical effects, which is of particular interest in interpreting the palaeoclimatic signal of the ice core obtained there.


2000 ◽  
Vol 31 ◽  
pp. 198-204 ◽  
Author(s):  
Qin Dahe ◽  
Ren Jiawen ◽  
Kang Jiancheng ◽  
Xiao Cunde ◽  
Li Zhongqin ◽  
...  

AbstractThe Chinese National Antarctic Research Expedition (GHINARE) carried out three traverses from Zhongshan station to Dome A, Princess Elizabeth Land and Inaccessible Area, East Antarctic ice sheet, during the 1996/97 to 1998/99 Antarctic field seasons. The expeditions are part of the Chinese International Trans-Antarctic Scientific Expedition program. In this project, glaciological investigations of mass balance, ice temperature, ice flow, stratigraphy in snow pits and snow/firn ice cores, as well as the glaciochemical study of surface snow and shallow ice cores, have been carried out. In the 1998/99 field season, CHINARE extended the traverse route to 1128 km inland from Zhongshan station. The density profiles show that firnification over Princess Elizabeth Land and Inaccessible Area (290–1100 km along the route) is fairly slow, and the accumulation rate recovered from snow pits along the initial 460 km of the route is 4.6–21 cm (46–210 kg m–2a–1 ) water equivalent. The initial 460 km of the route can be divided into four sections based on the differences of accumulation rate. This pattern approximately coincides with the study on the Lambert Glacier basin (LGB) by Australian scientists. During the past 50 years, the trends of both air temperature and accumulation rate show a slight increase in this area, in contrast to the west side of the LGB. Data on surface accumulation rates and their spatial and temporal variability over ice-drainage areas such as the LGB are essential for precise mass-balance calculation of the whole ice sheet, and are important for driving ice-sheet models and testing atmospheric models.


1982 ◽  
Vol 3 ◽  
pp. 269-273 ◽  
Author(s):  
D. Raynaud ◽  
I. M. Whillans

Analyses of ice cores taken from the Antarctic ice sheet can provide information on the environmental conditions under which the ice was formed. New results from measurements of gas content and stable isotope ratios in the Byrd station ice core are discussed and interpreted in terms of past iceflow changes.165 selected ice samples from 32 different depth levels along the core were processed for total gas content V and stable isotope ratios. This large dataset is used to discuss the variability and significance of the values of V at different depths. The short term variations of V are mainly explained by heterogeneities of the pore volume when the firn pores close off.The general trends in the values of V with depth are then used to investigate the possibility of past changes in the ice sheet. They suggest near-steady flow during the past few tens of thousands of years and that a thickening of about 200 to 250 m occurred in this area of the ice sheet at the end of the last ice age. This thickening could be due to a change in the accumulation rate.


1997 ◽  
Vol 25 ◽  
pp. 418-422 ◽  
Author(s):  
Eric J. Steig

An important component of models of the cryosphere is the calculation of accumulation rates over polar ice sheets. As a first-order approximation, many models rely on the assumption that temperature is the main controlling factor for precipitation. However, compilation of available ice-core data, including a new core from Taylor Dome, East Antarctica, suggests that precipitation is significantly decoupled from temperature for a large proportion of both the Greenland and Antarctic ice sheets. While the estimated glacial-to-interglacial change in temperature does not differ greatly among ice cores from each ice sheet, the estimated change in accumulation rate varies by more than a factor of 2. A simple vapor-pressure parameterization gives reasonable estimates of accumulation in the ice-sheet interior, but this is not necessarily the case close to the ice-sheet margin, where synoptic weather systems are important.


1982 ◽  
Vol 3 ◽  
pp. 269-273 ◽  
Author(s):  
D. Raynaud ◽  
I. M. Whillans

Analyses of ice cores taken from the Antarctic ice sheet can provide information on the environmental conditions under which the ice was formed. New results from measurements of gas content and stable isotope ratios in the Byrd station ice core are discussed and interpreted in terms of past iceflow changes.165 selected ice samples from 32 different depth levels along the core were processed for total gas content V and stable isotope ratios. This large dataset is used to discuss the variability and significance of the values of V at different depths. The short term variations of V are mainly explained by heterogeneities of the pore volume when the firn pores close off.The general trends in the values of V with depth are then used to investigate the possibility of past changes in the ice sheet. They suggest near-steady flow during the past few tens of thousands of years and that a thickening of about 200 to 250 m occurred in this area of the ice sheet at the end of the last ice age. This thickening could be due to a change in the accumulation rate.


1997 ◽  
Vol 25 ◽  
pp. 418-422 ◽  
Author(s):  
Eric J. Steig

An important component of models of the cryosphere is the calculation of accumulation rates over polar ice sheets. As a first-order approximation, many models rely on the assumption that temperature is the main controlling factor for precipitation. However, compilation of available ice-core data, including a new core from Taylor Dome, East Antarctica, suggests that precipitation is significantly decoupled from temperature for a large proportion of both the Greenland and Antarctic ice sheets. While the estimated glacial-to-interglacial change in temperature does not differ greatly among ice cores from each ice sheet, the estimated change in accumulation rate varies by more than a factor of 2. A simple vapor-pressure parameterization gives reasonable estimates of accumulation in the ice-sheet interior, but this is not necessarily the case close to the ice-sheet margin, where synoptic weather systems are important.


2016 ◽  
Vol 63 (237) ◽  
pp. 22-38 ◽  
Author(s):  
ANDREAS BORN

ABSTRACTThe full history of ice sheet and climate interactions is recorded in the vertical profiles of geochemical tracers in polar ice sheets. Numerical simulations of these archives promise great advances both in the interpretation of these reconstructions and the validation of the models themselves. However, fundamental mathematical shortcomings of existing models subject tracers to spurious diffusion, thwarting straightforward solutions. Here, I propose a new vertical discretization for ice-sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world flow of ice as a thinning of underlying layers. A new layer is added to the surface at equidistant time intervals, isochronally, thus identifying each layer uniquely by its time of deposition and age. This new approach is implemented for a two-dimensional section through the summit of the Greenland ice sheet. The ability to directly compare simulations of vertical ice cores with reconstructed data is used to find optimal model parameters from a large ensemble of simulations. It is shown that because this tuning method uses information from all times included in the ice core, it constrains ice-sheet sensitivity more robustly than a realistic reproduction of the modern ice-sheet surface.


1989 ◽  
Vol 12 ◽  
pp. 138-144 ◽  
Author(s):  
Catherine Ritz

The temperature profile measured in the Vostok bore hole is analysed. The temperature distribution in polar ice sheets depends mainly on past surface temperature, geothermal flux, and accumulation rate. In the present work, the heat equation is solved both for ice and for the underlying bedrock. The Vostok ice core offers a 160 000 year climatic record which is used to define the past surface temperature, while accumulation-rate variations are assumed to be governed by the saturation vapour pressure. The model is run for a number of different sets of parameters in order to find the parameter associations giving a good fit between the observed and the computed temperature profiles. With this model, it is possible to simulate the measured temperature profile within 0.1°C. To obtain this good fit, geothermal flux has to be higher than 50 mW/m2 and present-day accumulation rate must be lower than 2.6 cm/year. Sensitivity of these results both to the amplitude of surface-temperature change and to the velocity profile with depth is also investigated. Finally, it is shown that ice is at the melting point at the base of the ice sheet, which is in agreement with the presence of a subglacial lake near Vostok Station.


Sign in / Sign up

Export Citation Format

Share Document