scholarly journals How well can we parameterize past accumulation rates in polar ice sheets?

1997 ◽  
Vol 25 ◽  
pp. 418-422 ◽  
Author(s):  
Eric J. Steig

An important component of models of the cryosphere is the calculation of accumulation rates over polar ice sheets. As a first-order approximation, many models rely on the assumption that temperature is the main controlling factor for precipitation. However, compilation of available ice-core data, including a new core from Taylor Dome, East Antarctica, suggests that precipitation is significantly decoupled from temperature for a large proportion of both the Greenland and Antarctic ice sheets. While the estimated glacial-to-interglacial change in temperature does not differ greatly among ice cores from each ice sheet, the estimated change in accumulation rate varies by more than a factor of 2. A simple vapor-pressure parameterization gives reasonable estimates of accumulation in the ice-sheet interior, but this is not necessarily the case close to the ice-sheet margin, where synoptic weather systems are important.

1997 ◽  
Vol 25 ◽  
pp. 418-422 ◽  
Author(s):  
Eric J. Steig

An important component of models of the cryosphere is the calculation of accumulation rates over polar ice sheets. As a first-order approximation, many models rely on the assumption that temperature is the main controlling factor for precipitation. However, compilation of available ice-core data, including a new core from Taylor Dome, East Antarctica, suggests that precipitation is significantly decoupled from temperature for a large proportion of both the Greenland and Antarctic ice sheets. While the estimated glacial-to-interglacial change in temperature does not differ greatly among ice cores from each ice sheet, the estimated change in accumulation rate varies by more than a factor of 2. A simple vapor-pressure parameterization gives reasonable estimates of accumulation in the ice-sheet interior, but this is not necessarily the case close to the ice-sheet margin, where synoptic weather systems are important.


1994 ◽  
Vol 20 ◽  
pp. 231-236
Author(s):  
A.J. Gow

Cores of highly strained ice recovered from depths of 1200–1800 m at Byrd Station in 1967–68 have been found to have recrystallized while in storage in the United States. Such recrystallization, inferred to have occurred when temperatures in the storage facility rose above about – 14°C, would not have been discovered if thin sections of the cores had not been prepared and photographed at the drill site within hours of pulling the cores to the surface. It was only after new sections of the long stored cores were compared with the original sections that the full extent of recrystallization was revealed. The recrystallized structure emulates in both texture and fabric those observed in naturally annealed ice in the bottom 350 m at Byrd Station. It is concluded that polar ice cores should be stored at temperatures of –20°C or colder in order to inhibit or minimize post-drilling recrystallization.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nicolas Stoll ◽  
Jan Eichler ◽  
Maria Hörhold ◽  
Wataru Shigeyama ◽  
Ilka Weikusat

Insoluble and soluble impurities, enclosed in polar ice sheets, have a major impact on the deformation behaviour of the ice. Macro- and Micro-scale deformation observed in ice sheets and ice cores has been retraced to chemical loads in the ice, even though the absolute concentration is negligible. And therefore the exact location of the impurities matters: Allocating impurities to specific locations inside the ice microstructure inherently determines the physical explanation of the observed interaction between chemical load and the deformational behaviour. Both, soluble and non-soluble impurities were located in grain boundaries, triple junctions or in the grain interior, using different methods, samples and theoretical approaches. While each of the observations is adding to the growing understanding of the effect of impurities in polar ice, the growing number of ambiguous results calls for a dedicated and holistic approach in assessing the findings. Thus, we here aim to give a state of the art overview of the development in microstructural impurity research over the last 20 years. We evaluate the used methods, discuss proposed deformation mechanisms and identify two main reasons for the observed ambiguity: 1) limitations and biases of measurement techniques and 2) the physical state of the analysed impurity. To overcome these obstacles we suggest possible approaches, such as the continuous analysis of impurities in deep ice cores with complementary methods, the implementation of these analyses into established in-situ ice core processing routines, a more holistic analysis of the microstructural location of impurities, and an enhanced knowledge-transfer via an open access data base.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


1994 ◽  
Vol 20 ◽  
pp. 95-100
Author(s):  
Takao Kameda ◽  
Renji Naruse

The air-bubble formation process has been studied experimentally by using five ice cores from the Greenland and Antarctic ice sheets. Bubble volumes in firn-ice samples were measured by a classical method based on Boyle Mariotte's law for an ideal gas. It was found that the bubble volume varies with depth as a function of bulk density in the firn-ice transition layer, which is represented by an exponential function of firn density. Air bubbles start to form rapidly at a bulk density of 0.763–0.797 Mg m-3. This density (ρib) seems to be correlated with the ice temperature in the ice sheets; ρibincreases with a decrease in the ice temperature. Vbshows the maximum value in the density range 0.819–0.832 Mg m-3. The corresponding porosity of the density ranges between 0.110 and 0.097. This porosity does not seem to correlate with ice temperature or accumulation rate at the coring site. These characteristics of firn densities probably affect the amount of entrapped air in glacier ice (total air content) in polar ice sheets.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


1994 ◽  
Vol 20 ◽  
pp. 231-236 ◽  
Author(s):  
A.J. Gow

Cores of highly strained ice recovered from depths of 1200–1800 m at Byrd Station in 1967–68 have been found to have recrystallized while in storage in the United States. Such recrystallization, inferred to have occurred when temperatures in the storage facility rose above about – 14°C, would not have been discovered if thin sections of the cores had not been prepared and photographed at the drill site within hours of pulling the cores to the surface. It was only after new sections of the long stored cores were compared with the original sections that the full extent of recrystallization was revealed. The recrystallized structure emulates in both texture and fabric those observed in naturally annealed ice in the bottom 350 m at Byrd Station. It is concluded that polar ice cores should be stored at temperatures of –20°C or colder in order to inhibit or minimize post-drilling recrystallization.


2004 ◽  
Vol 39 ◽  
pp. 214-218 ◽  
Author(s):  
Gordon S. Hamilton

AbstractSnow-accumulation rates are known to be sensitive to local changes in ice-sheet surface slope because of the effect of katabatic winds. These topographic effects can be preserved in ice cores that are collected at non-ice-divide locations. The trajectory of an ice-core site at South Pole is reconstructed using measurements of ice-sheet motion to show that snow was probably deposited at places of different surface slope during the past 1000 years. Recent accumulation rates, derived from shallow firn cores, vary along this trajectory according to surface topography, so that on a relatively steep flank mean annual accumulation is ∼18% smaller than on a nearby topographic depression. These modern accumulation rates are used to reinterpret the cause of accumulation rate variability with time in the long ice-core record as an ice-dynamics effect and not a climate-change signal. The results highlight the importance of conducting ancillary ice-dynamics measurements as part of ice-coring programs so that topographic effects can be deconvolved from potential climate signals.


1994 ◽  
Vol 20 ◽  
pp. 95-100
Author(s):  
Takao Kameda ◽  
Renji Naruse

The air-bubble formation process has been studied experimentally by using five ice cores from the Greenland and Antarctic ice sheets. Bubble volumes in firn-ice samples were measured by a classical method based on Boyle Mariotte's law for an ideal gas. It was found that the bubble volume varies with depth as a function of bulk density in the firn-ice transition layer, which is represented by an exponential function of firn density. Air bubbles start to form rapidly at a bulk density of 0.763–0.797 Mg m-3. This density (ρib) seems to be correlated with the ice temperature in the ice sheets; ρib increases with a decrease in the ice temperature. Vb shows the maximum value in the density range 0.819–0.832 Mg m-3. The corresponding porosity of the density ranges between 0.110 and 0.097. This porosity does not seem to correlate with ice temperature or accumulation rate at the coring site. These characteristics of firn densities probably affect the amount of entrapped air in glacier ice (total air content) in polar ice sheets.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 637-641 ◽  
Author(s):  
A T. Wilson

I describe here the use of the accelerator mass spectrometer (AMS) sublimation technique to 14C-date polar ice cores. An unexpected result of this work has been to extend the understanding of how polar ice sheets entrap and record the past composition of the Earth's atmosphere. This work has led to the discovery of a new phenomenon in which CO2 and other greenhouse gases can be entrapped in cold (never melted) polar ice sheets.


Sign in / Sign up

Export Citation Format

Share Document