vostok station
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 252 ◽  
pp. 779-787
Author(s):  
Aleksey Bolshunov ◽  
Nikolay Vasiliev ◽  
Igor Timofeev ◽  
Sergey Ignatiev ◽  
Dmitriy Vasiliev ◽  
...  

The subglacial Lake Vostok in Antarctic is a unique natural phenomenon, its comprehensive study involves sampling of water and bottom surface rocks. For further study of the lake, it is necessary to drill a new access well and develop environmentally safe technologies for its exploration. This article discusses existing and potential technologies for sampling bottom surface rocks of subglacial lakes. All these technologies meet environmental safety requirements and are conducive for sampling. The authors have proposed an alternative technology, using a walking device, which, due to its mobility, enables selective sampling of rocks across a large area from a single access well. The principal issues, related to the implementation of the proposed technology, are investigated within this article. This report is prepared by a team of specialists with many years of experience in drilling at the Vostok Station in Antarctic and in experimental work on the design of equipment and non-standard means of mechanization for complicated mining, geological and climatic conditions.


2021 ◽  
Vol 67 (3) ◽  
pp. 249-260
Author(s):  
E. E. Sibir ◽  
V. F. Radionov ◽  
E. N. Rusina

Given the significant changes in the climate on the planet as a whole, databases and archives of data on the main climate-forming characteristics of the atmosphere, collected over long periods of time in various regions of the globe and, in particular, in the polar regions, acquire a special role. Total solar radiation is one of the most important parameters affecting the energy balance of the Earth-atmosphere system. We have created a database (DB) of hourly and daily sums of total radiation (Q) at the Russian Antarctic stations, designed to study the radiation regime of the Antarctic, from the beginning of actinometric observations to 2019. The information presented in the database was collected at five Antarctic stations — Bellingshausen, Vostok Mirny, Novolazarevskaya and Progress. The database has undergone a state registration procedure and is registered under No. 2020621401. The article gives a description of the structure of the DB and presents detailed information for each station. To provide an example of how database information can be used, characteristics of the total radiation in different parts of the Antarctic continent are obtained. Thus, it is found that the average monthly amounts of Q in the continental part of Antarctica on the high plateau (Vostok station) in conditions of minimal cloudiness and high transparency during the Antarctic summer are maximum and average 1240 MJ/m2. At the same time, at the tip of the Antarctic Peninsula (Bellingshausen station) during the same period, the average monthly amounts of Q due to the almost constantly present cloud cover do not exceed 570 MJ/m2. In the coastal areas at the three remaining stations, the average monthly amounts of total radiation range from 908 MJ/m2 (Progress) to 950 MJ/m2 (Mirny). Estimates of variability characteristics of daily, monthly, and annual sums of total radiation at all the five stations for the entire observation period up to 2019 were also obtained. The absence of statistically significant long-term trends in the annual and monthly sums of total radiation at all the stations under consideration was noted. The results of their analysis indicate that there are no significant changes in the inflow of total solar radiation to the Antarctic surface over more than sixty years of actinometric observations.


2021 ◽  
pp. 1-11
Author(s):  
Aleksey Markov ◽  
Pavel Talalay ◽  
Mikhail Sysoev ◽  
Andrey Miller ◽  
Alexander Cherepakhin

Abstract This article presents the main aspects of the design solutions (based on the application of sensors MEMS and cantilevers), testing and applying of the multi-functional borehole logger ANTTIC (Antarctic Thermo-barometer, Inclinometer, Caliper) for geophysical high-precision monitoring (when simultaneous registering of temperature, pressure, axis inclination angle and radii of borehole cross-sections at 12 points), which is designed specifically for ultra-low temperatures and ultra-high pressures, and to determine an elliptical borehole shape and registration anisotropy factor in deep ice boreholes in the central region of Eastern Antarctica, in the areas of dome A at the Kunlun station (China) and/or of lake Vostok at the Vostok station (Russia).


2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


2021 ◽  
pp. 1-6
Author(s):  
Aleksei V. Turkeev ◽  
Nikolai I. Vasilev ◽  
Vladimir Ya. Lipenkov ◽  
Alexey V. Bolshunov ◽  
Alexey A. Ekaykin ◽  
...  

Abstract Recent studies have shown that stratigraphically disturbed meteoric ice bedded at Vostok Station between 3318 and 3539 m dates back to 1.2 Ma BP and possibly beyond. As part of the VOICE (Vostok Oldest Ice Challenge) initiative, a new deviation from parent hole 5G-1 was made at depths of 3270–3291 m in the 2018/19 austral season with the aim of obtaining a replicate core of the old ice. Sidetracking was initiated using the standard KEMS-132 electromechanical drill routinely employed for deep ice coring at Vostok, without significant changes to its initial design. Here we describe the method and operating procedures for replicate coring at a targeted depth in an existing slant hole, involving the use of a cable-suspended electromechanical drill. The design of the milling cutter head used for sidetracking is presented. The performance characteristics and the experience of drilling branch-hole 5G-5 at Vostok are described and discussed.


2020 ◽  
Author(s):  
Alexey Ekaykin ◽  
Natalia Tebenkova ◽  
Vladimir Lipenkov ◽  
Arina Veres ◽  
Kirill Tchikhatchev ◽  
...  

<p>We demonstrate that the accumulation-stake measurements in central Antarctica systematically underestimate the value of the snow build-up due to the compaction of snow layer between the stake base and the snow surface. We have developed two methods to define the corresponding correction to the snow build-up measurements at the stake farm near Vostok station. The first method is based on "Sorge's law" to calculate the rate of thinning of the snow layers using the vertical snow density profile. The second method consists of direct instrumental measurements of this thinning in the field. We have also involved the data of other two independent methods to estimate the snow accumulation rate in the vicinity of Vostok - first, geodetic data on the rate of snow layer sinking and, second, glaciological data from snow pits. The most reliable estimate of the snow accumulation rate in this region is 2.26±0.10 g cm-2 year-1, that is 8±4 % higher than initial (not corrected) value from the accumulation-stake measurements.</p>


2020 ◽  
Vol 45 (2) ◽  
pp. 132-140
Author(s):  
A. A. Ekaykin ◽  
N. A. Teben’kova ◽  
V. Ya. Lipenkov ◽  
K. B. Tchikhatchev ◽  
A. N. Veres ◽  
...  

2019 ◽  
Vol 65 (2) ◽  
pp. 201-211 ◽  
Author(s):  
S. D. Grigoreva ◽  
E. V. Ryzhova ◽  
S. V. Popov ◽  
M. P. Kashkevich ◽  
V. I. Kashkevich

The paper discusses the results of the ground-penetrating radar (GPR) survey carried out in February 2019 in the area of Thala Bay (Larsemann Hills, East Antarctica). Thala Bay is one of the strategic facilities of the Russian Antarctic Expedition (RAE) in the Progress station area as since 2019 heavy cargo has been unloaded here intended for the construction of new facilities at the Vostok station. Transportation of goods to the point of formation of logistic traverses takes place on ice tracks, whose safety must be evaluated taking into account the expanded system of crevasses. In addition, the current track is characterized by a significant slope of the terrain, which also complicates the relocation of heavy equipment.In February 2019, a GPR survey was carried out within the Thala Bay area to assess the possibility of organizing an alternative section of the route within it. According to the visual observations, this area was characterized by an extensive system of crevasses, the width of which at the surface reached 20-30 cm, and the prevailing longitudinal direction coincided with the direction of the route. The task of the geophysical survey was to map the crevasses not identified by visual inspection and to determine their morphology. According to the GPR data, it was shown that the crevasses within the site are located to the firn layer and are characterized by an irregular shape, significantly expanding at the deeper levels and reaching a width of 6 m. The results of the survey are illustrated with the scheme of the firn thickness which shows location of the crevasses. According to the recommendations of the authors, the section of the glacier is suitable for operation provided the glaciological situation using the GPR method is monitored annualy.


2019 ◽  
Vol 65 (2) ◽  
pp. 169-185
Author(s):  
Yu. A. Shibayev ◽  
K. B. Tchikhatchev ◽  
V. Ya. Lipenkov ◽  
A. A. Ekaykin ◽  
E. Lefebvre ◽  
...  

The data on snow the temperature which was monitored to a depth of 10 m in the vicinity of Vostok Station by the TAUTO autonomous system in 2010–2017 are presented. By analyzing seasonal temperature variations at different depth with the aid of a heat-transfer model we have inferred a relationship between relative thermal conductivity of snow and its porosity at this site. The same approach was also applied to analyze similar data obtained at Dome Fuji station in 1995–1997. It was found that the thermal conductivity of snow layers with identical density is noticeably lower at Dome Fuji than at Vostok, which point to a difference in structural characteristics of snow that determine its thermophysical properties. We demonstrate that the conduction is the dominant heat-transport mechanism which controls the temperature distribution in snow pack on the Antarctic plateau. The obtained parameters of the heat-transfer model can be used for reconstructing the past surface temperature variations from the long-term temperature measurements in the upper 100 m thick layer of the ice sheet.


Sign in / Sign up

Export Citation Format

Share Document