scholarly journals The serological response and long-lasting resistance against infection with louping-ill virus in sheep immunized with a highly attenuated tick-borne encephalitis virus

1969 ◽  
Vol 67 (4) ◽  
pp. 731-738 ◽  
Author(s):  
V. Mayer ◽  
D. Blaškovič ◽  
E. Ernek ◽  
H. Libíková

SUMMARYThe vaccination of sheep with one dose of the monkey-and mouse-attenuated tick-borne encephalitis virus (the Hy-HK 28 ‘2’ clone) causes seroconversion from negative into positive in 85% of animals. In sheep with pre-existing virus-neutralizing antibodies and increas of their titres was observed in 81%. The antibodies persisted for at least 12 months after the vaccination and during the summer period of grazing the number of serologically positive animals even increased.The vaccinated animals, in contrast to the non-immune control sheep, developed no viraemia after challenge with the virulent louping-ill virus, performed 11 months after immunization.

Author(s):  
Patricia A. Nuttall

Tick-borne encephalitides are caused by three different viruses transmitted by ticks and belonging to the Flaviviridae virus family: tick-borne encephalitis virus (Far Eastern, Siberian, and European subtypes), louping ill virus, and Powassan virus (including deer tick virus). These viruses cause encephalitis affecting humans in Eurasia and North America. In nature, they are maintained in transmission cycles involving Ixodes tick species and small or medium-sized wild mammals. The tick-borne flavivirus group is one of the most intensely studied groups of tick-borne pathogens.


2011 ◽  
Vol 92 (12) ◽  
pp. 2821-2829 ◽  
Author(s):  
Karen L. Mansfield ◽  
Daniel L. Horton ◽  
Nicholas Johnson ◽  
Li Li ◽  
Alan D. T. Barrett ◽  
...  

Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Xu Yang ◽  
Jianxun Qi ◽  
Ruchao Peng ◽  
Lianpan Dai ◽  
Ernest A. Gould ◽  
...  

ABSTRACT Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are members of the tick-borne flaviviruses (TBFVs) in the family Flaviviridae which cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines against TBEV and LIV are available, infection rates are rising due to the low vaccination coverage. To date, no specific therapeutics have been licensed. Several neutralizing monoclonal antibodies (MAbs) show promising effectiveness in the control of TBFVs, but the underlying molecular mechanisms are yet to be characterized. Here, we determined the crystal structures of the LIV envelope (E) protein and report the comparative structural analysis of a TBFV broadly neutralizing murine MAb (MAb 4.2) in complex with either the LIV or TBEV E protein. The structures reveal that MAb 4.2 binds to the lateral ridge of domain III of the E protein (EDIII) of LIV or TBEV, an epitope also reported for other potently neutralizing MAbs against mosquito-borne flaviviruses (MBFVs), but adopts a unique binding orientation. Further structural analysis suggested that MAb 4.2 may neutralize flavivirus infection by preventing the structural rearrangement required for membrane fusion during virus entry. These findings extend our understanding of the vulnerability of TBFVs and other flaviviruses (including MBFVs) and provide an avenue for antibody-based TBFV antiviral development. IMPORTANCE Understanding the mechanism of antibody neutralization/protection against a virus is crucial for antiviral countermeasure development. Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are tick-borne flaviviruses (TBFVs) in the family Flaviviridae. They cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines for both viruses are available, infection rates are rising due to low vaccination coverage. In this study, we solved the crystal structures of the LIV envelope protein (E) and a broadly neutralizing/protective TBFV MAb, MAb 4.2, in complex with E from either TBEV or LIV. Key structural features shared by TBFV E proteins were analyzed. The structures of E-antibody complexes showed that MAb 4.2 targets the lateral ridge of both the TBEV and LIV E proteins, a vulnerable site in flaviviruses for other potent neutralizing MAbs. Thus, this site represents a promising target for TBFV antiviral development. Further, these structures provide important information for understanding TBFV antigenicity.


2012 ◽  
Vol 19 (4) ◽  
pp. 623-625 ◽  
Author(s):  
Philip O. Rabel ◽  
Christina B. Planitzer ◽  
Maria R. Farcet ◽  
Thomas R. Kreil

ABSTRACTPatients with primary immunodeficiency (PIDs) depend on the presence of a variety of antibody specificities in intravenous immunoglobulin (IVIG). Using the tick-borne encephalitis virus (TBEV), geographic variability in IVIG antibody content was shown. Care should therefore be exercised when treating PIDs in a given geography, as only locally sourced plasma contains the antibody specificities against the circulating pathogens in the given locality.


Vaccine ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Galina N. Leonova ◽  
Vladimir A. Ternovoi ◽  
Elena V. Pavlenko ◽  
Olga S. Maistrovskaya ◽  
Elena V. Protopopova ◽  
...  

2009 ◽  
Vol 83 (17) ◽  
pp. 8482-8491 ◽  
Author(s):  
Stefan Kiermayr ◽  
Karin Stiasny ◽  
Franz X. Heinz

ABSTRACT The envelope protein E of flaviviruses mediates both receptor-binding and membrane fusion. At the virion surface, 180 copies of E are tightly packed and organized in a herringbone-like icosahedral structure, whereas in noninfectious subviral particles, 60 copies are arranged in a T=1 icosahedral symmetry. In both cases, the basic building block is an E dimer which exposes the binding sites for neutralizing antibodies at its surface. It was the objective of our study to assess the dependence of the antigenic structure of E on its quaternary arrangement, i.e., as part of virions, recombinant subviral particles, or soluble dimers. For this purpose, we used a panel of 11 E protein-specific neutralizing monoclonal antibodies, mapped to distinct epitopes in each of the three E protein domains, and studied their reactivity with the different soluble and particulate forms of tick-borne encephalitis virus E protein under nondenaturing immunoassay conditions. Significant differences in the reactivities with these forms were observed that could be related to (i) limited access of certain epitopes at the virion surface; (ii) limited occupancy of epitopes in virions due to steric hindrance between antibodies; (iii) differences in the avidity to soluble forms compared to the virion, presumably related to the flexibility of E at its domain junctions; and (iv) modulations of the external E protein surface through interactions with its stem-anchor structure. We have thus identified several important factors that influence the antigenicity of the flavivirus E protein and have an impact on the interaction with neutralizing antibodies.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Richard Lindqvist ◽  
Ebba Rosendal ◽  
Elvira Weber ◽  
Naveed Asghar ◽  
Sarah Schreier ◽  
...  

Abstract Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.


2013 ◽  
Vol 13 (10) ◽  
pp. 762-768 ◽  
Author(s):  
Bjørnar Ytrehus ◽  
Kirsti Vainio ◽  
Susanne G. Dudman ◽  
Janice Gilray ◽  
Kim Willoughby

Sign in / Sign up

Export Citation Format

Share Document