Abstract
In Kawasaki disease (KD), accurate prediction of intravenous immunoglobulin (IVIG) resistance is crucial to reduce a risk for developing coronary artery lesions. To establish a simple and accurate scoring model predicting IVIG resistance, we conducted a retrospective cohort study of 996 KD patients that were diagnosed at 11 facilities for 10 years, in which 108 cases (23.5%) were resistant to initial IVIG treatment. We performed machine learning with random forest model using 30 clinical variables at diagnosis in 796 and 200 cases for training and test datasets, respectively. Random forest model accurately predicted IVIG resistance (AUC; 0.75, sensitivity; 0.54, specificity; 0.80). Next, using top five influential features (days of illness at initial therapy, serum levels of C-reactive protein, sodium, total bilirubin, and total cholesterol) in the random forest model, we designed a simple scoring system. In spite of its simplicity, the scoring system predicted IVIG resistance (AUC; 0.73, sensitivity; 0.55, specificity; 0.83) as accurately as the random forest model itself. Moreover, accuracy of our scoring system with five clinical features was almost identical to that of Gunma score with seven clinical features (AUC; 0.73, sensitivity; 0.53, specificity; 0.83), a well-known logistic regression scoring model, and superior to that of two widely used scores (Kurume score; 0.67, 0.46 and 0.76, respectively, and Osaka score; 0.69, 0.33 and 0.84, respectively). Conclusions: Our simple scoring system based on the findings in machine learning, as well as machine learning itself, seems to be useful to accurately predict IVIG resistance in KD patients.