tbev strain
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 14)

H-INDEX

4
(FIVE YEARS 3)

2021 ◽  
Vol 66 (11) ◽  
pp. 689-694
Author(s):  
A. L. Shutikova ◽  
G. N. Leonova ◽  
A. F. Popov ◽  
M. Yu. Shchelkanov

The coexistence of various pathogens inside the patient’s body is one of the poorly studied and current issues. The aim of the study is to identify the relationship between the indicators of complex laboratory diagnostics and the clinical manifestations of a mixed disease during subsequent infection with the SARS-CoV-2 virus using the example of a case of chronic encephalitis-borreliosis infection. Seven blood serum samples were collected from the patient over the course of a year. For the etiological verification of the causative agents of TBE, Lyme disease and COVID-19, the methods of ELISA and PCR diagnostics were used. The patient was diagnosed with Lyme disease on the basis of the detection of IgG antibodies to Borrelia 5 months after the onset of the disease, since she denied the tick bite. In the clinical picture, there was an articular syndrome and erythema migrans. Later, IgG antibodies to the TBEV were found in the blood. Throughout the study, IgM antibodies to Borrelia were not detected. The exacerbation of Lyme disease could be judged by the clinical manifestations of this disease and by the growth of specific IgG antibodies. A feature of this case was that during an exacerbation of the Lyme disease, an infection with the SARS-CoV-2 virus occurred. Treatment (umifenovir, hydroxychloroquine, azithromycin, ceftriaxone) was prescribed, which improved the condition of the underlying disease, decreased joint pain, decreased IgG levels to borrelia. However, during this period, serological markers of TBEV appear: antigen, IgM antibodies, and the titer of IgG antibodies increases. Most likely, this was facilitated by the switching of the immune system to the SARS-CoV-2 virus, with the simultaneous suppression of borrelia with antibiotics and the appointment of hydroxychloroquine, which has an immunosuppressive effect. Despite the activation of the virus, clinical manifestations of TBE were not observed in the patient, which is most likely associated with infection with a weakly virulent TBEV strain. The further course of tick-borne infections revealed the dominant influence of B. burgdorferi in relation to TBEV. Laboratory studies have shown that suppression of the activity of the borreliosis process by etiotropic treatment subsequently led to the activation of the persistent TBEV.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2164
Author(s):  
Veronika J. M. Breitkopf ◽  
Gerhard Dobler ◽  
Peter Claus ◽  
Hassan Y. Naim ◽  
Imke Steffen

Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.


Author(s):  
Yves Hansmann ◽  
Aurélie Velay

The first human case of tick-borne encephalitis virus (TBEV) infection in France was reported in 1968 in Alsace, an eastern region next to the German border: a gamekeeper working in a forest near Strasbourg.1 Between 1970 and 1974, an extensive research survey confirmed the presence of TBEV in ticks and rodents in this French region. Eight percent of adult tick batches collected were infected (Ixodes ricinus) by the TBEV. Tick collection occurred in a forest near Strasbourg, the main city in the region. Nymphs were more rarely infected (1.6% of the collected lots).1 These data were confirmed in 2011 in Alsace in Guebwiller’s Valley, a middle altitude forest, with identification of western (European) subtype TBEV (TBEV-EU). The infection rate still remains low: TBEV was detected only in the I. ricinus nymphs (2.48%) that were collected during May; however, not in those collected during the other spring or summer months. In a more recent study, Bestehorn et al., collected ticks (953 male, 856 female adult ticks and 2,255 nymphs) in endemic foci in the upper Rhine region in France and Germany between 2016, 2017 and 2018 by flagging2. The minimal infection rate (MIR) of the collected ticks in the Foret de la Robertsau (France) was estimated to 0,11% (1 nymph/944 ticks). The isolated and sequenced TBEV strain from Foret de la Robertsau (F) is related to circulating TBEV isolates from eastern Bavaria and the Czech Republic. In the French department Alsace, there are today at least two independent TBEV strains circulating: the historical Alsace strain isolated in 1971 and the newly identified strain from Foret de la Robertsau. Other wooded regions (Ardennes) were explored for TBEV in ticks, but without evidence of virus infection.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 196
Author(s):  
Monique Petry ◽  
Martin Palus ◽  
Eva Leitzen ◽  
Johanna Gracia Mitterreiter ◽  
Bei Huang ◽  
...  

Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.


2021 ◽  
Author(s):  
Monique Petry ◽  
Martin Palus ◽  
Eva Leitzen ◽  
Johanna Gracia Mitterreiter ◽  
Bei Huang ◽  
...  

AbstractTick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. Although currently used inactivated whole virus vaccines are effective, vaccination breakthroughs have been reported for which the reasons are unclear. In this study we tested in mice the efficacy of pre-infection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain TBEV-Hypr (referred to as TBEV-Hypr). LGTV has been evaluated as an experimental live vaccine against TBE, but further development was abandoned due to too high residual pathogenicity of a LGTV-based vaccine. Here we show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from non-immunized control mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 pre-infected mice although at reduced frequency as compared to the non-immunized TBEV-Hypr infected control mice. Interestingly, qPCR detected the presence of viral RNA in the brains and spinal cord of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV-280, it may still enter the CNS of these animals. These findings improve our understanding of potential causes for vaccine failure in individuals vaccinated with TBE vaccines.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Richard Lindqvist ◽  
Ebba Rosendal ◽  
Elvira Weber ◽  
Naveed Asghar ◽  
Sarah Schreier ◽  
...  

Abstract Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.


2020 ◽  
Author(s):  
Richard Lindqvist ◽  
Ebba Rosendal ◽  
Naveed Asghar ◽  
Sarah Schreier ◽  
Annasara Lenman ◽  
...  

Abstract Background: Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection ranges from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known, however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection.Method: Mice were infected with different TBEV strains, and high virulent and low virulent TBEV were chosen. Sequence alignment were used to identify differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes and MEFs. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated.Results: We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild type (WT) Torö and this correlated with enhanced pathogenicity in vivo. The E protein is also the major target of neutralizing antibodies, thus genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we choose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains.Conclusions: Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T and A463S, enhanced Torö infection of neurons as well as pathogenesis in vivo, furthermore we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.


2020 ◽  
Vol 28 ◽  
pp. 204020662094346
Author(s):  
Evgenia V Dueva ◽  
Ksenia K Tuchynskaya ◽  
Liubov I Kozlovskaya ◽  
Dmitry I Osolodkin ◽  
Kseniya N Sedenkova ◽  
...  

Tick-borne encephalitis is an important human arbovirus neuroinfection spread across the Northern Eurasia. Inhibitors of tick-borne encephalitis virus (TBEV) strain Absettarov, presumably targeting E protein n-octyl-β-d-glucoside (β-OG) pocket, were reported earlier. In this work, these inhibitors were tested in vitro against seven strains representing three main TBEV subtypes. The most potent compound, 2-[(2-methyl-1-oxido-5,6,7,8-tetrahydroquinazolin-4-yl)amino]-phenol, showed EC50 values lower than 22 µM against all the tested strains. Nevertheless, EC50 values for virus samples of certain strains demonstrated a substantial variation, which appeared to be consistent with the presence of E protein not only in infectious virions, but also in non-infectious and immature virus particles, protein aggregates, and membrane complexes.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Mikhail F. Vorovitch ◽  
Galina B. Maikova ◽  
Liubov L. Chernokhaeva ◽  
Victor V. Romanenko ◽  
Galina G. Karganova ◽  
...  

Up to 10,000 cases of tick-borne encephalitis are registered annually, 20% of which occur in children under 17 years of age. A comparison of the immunogenicity and safety between a new pediatric Tick-E-Vac vaccine based on the TBEV strain Sofjin and FSME-IMMUN Junior vaccine was performed in the Sverdlovsk region. The vaccine strains differ from strains of the Siberian subtype of TBEV that dominates in the region. The study was performed on 163 children aged 1 to 15, who received one of the vaccines according to either a conventional or rapid vaccination schedule. Immunogenicity was assessed based on the seroprotection rates and titers of virus-neutralizing antibodies. There were no significant differences in either the immunogenicity or reactogenicity of the pediatric vaccines based on strains of the Far Eastern or European subtypes of TBEV. Under both vaccination schedules, 30 days after the second injection, seroprotection rates were 100% for Tick-E-Vac and greater than 95% for FSME-IMMUN Junior, while the geometric mean titer of TBEV-neutralizing antibodies was at least 2,4 log10 (1 : 250) for either vaccine. Fourteen days after the second injection according to the rapid schedule, seroprotection rates were significantly lower, ranging from 50% to 63% regardless of the vaccine used. The observed adverse reactions were mild or moderate for both vaccines under both vaccination schedules, with total adverse event rates of less than 25%. Reactogenicity was not associated with the gender or age of the recipients. There were no statistically significant differences in the incidence of adverse reactions between the group of subjects who were baseline seronegative or seropositive. However, 14 days after the second vaccine injection according to the rapid schedule, a statistically significant difference in nAbs titers was identified between groups of children with and without reported reactions.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1069 ◽  
Author(s):  
Michelitsch ◽  
Tews ◽  
Klaus ◽  
Bestehorn-Willmann ◽  
Dobler ◽  
...  

Tick-borne encephalitis is the most important tick-transmitted zoonotic virus infection in Eurasia, causing severe neurological symptoms in humans. The causative agent, the tick-borne encephalitis virus (TBEV), circulates between ticks and a variety of mammalian hosts. To study the interaction between TBEV and one of its suspected reservoir hosts, bank voles of the Western evolutionary lineage were inoculated subcutaneously with either one of eight TBEV strains or the related attenuated Langat virus, and were euthanized after 28 days. In addition, a subset of four strains was characterized in bank voles of the Carpathian linage. Six bank voles were inoculated per strain, and were housed together in groups of three with one uninfected in-contact animal each. Generally, most bank voles did not show any clinical signs over the course of infection. However, one infected bank vole died and three had to be euthanized prematurely, all of which had been inoculated with the identical TBEV strain (Battaune 17-H9, isolated in 2017 in Germany from a bank vole). All inoculated animals seroconverted, while none of the in-contact animals did. Viral RNA was detected via real-time RT-PCR in the whole blood samples of 31 out of 74 inoculated and surviving bank voles. The corresponding serum sample remained PCR-negative in nearly all cases (29/31). In addition, brain and/or spine samples tested positive in 11 cases, mostly correlating with a positive whole blood sample. Our findings suggest a good adaption of TBEV to bank voles, combining in most cases a low virulence phenotype with detectable virus replication and hinting at a reservoir host function of bank voles for TBEV.


Sign in / Sign up

Export Citation Format

Share Document