Experimental study on neurorrhaphy of the recurrent laryngeal nerve in dogs

1996 ◽  
Vol 110 (8) ◽  
pp. 748-753 ◽  
Author(s):  
A. Rubio ◽  
M. R. Fernández ◽  
J. Figols ◽  
J. Rama

AbstractThe effectiveness of anastomosis of a divided recurrent laryngeal nerve was evaluated in six adult mongrel dogs. Videolaryngoscopy and evoked compound muscle action potentials in the intrinsic laryngeal muscles were performed at six months and the posterior cricoarytenoid muscles and recurrent laryngeal nerves were processed for histomorphometric studies. Recovery of compound muscle action potentials in all re-innervated muscles and histomorphometric findings confirmed a good grade of axonal regeneration. The most significant histomorphometric changes observed were: a reactive hypertrophy of type I fibres in the posterior cricoarytenoid muscles of the re-innervated side, and a high nerve fibre density in the distal stump to the anastomosis. However, incomplete recovery of motion and fasciculated movements of the reinnervated vocal folds were observed. Reduction of effective motor units in the re-innervated muscles might be a factor that cause incomplete restoration of vocal fold movements.

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2129
Author(s):  
Satoru Miyamaru ◽  
Daizo Murakami ◽  
Kohei Nishimoto ◽  
Narihiro Kodama ◽  
Joji Tashiro ◽  
...  

We aimed to determine the optimal management of recurrent laryngeal nerve (RLN) involvement in thyroid cancer. We enrolled 80 patients with unilateral RLN involvement in thyroid cancer between 2000 and 2016. Eleven patients with preoperatively functional vocal folds (VFs) underwent sharp tumor resection to preserve the RLN (shaving group). Thirty-three patients underwent RLN reconstruction with RLN resection (reconstruction group). We divided the reconstruction group into two subgroups based on preoperative VF mobility (normal-reconstruction and paralyzed-reconstruction subgroups). In the cases where RLN reconstruction was difficult, phonosurgeries including arytenoid adduction (AA), with or without thyroplasty type I, or nerve muscle pedicle implantation with AA were performed later (phonosurgery group). We evaluated and compared vocal function among the evaluated periods and different groups. Postoperative vocal function in the shaving and normal-reconstruction subgroups was favorable. There were no significant differences between the two groups. In the paralyzed-reconstruction and phonosurgery groups, postoperative vocal function was significantly improved, and vocal function in the paralyzed-reconstruction subgroup was significantly better than that in the phonosurgery group. For optimal management of unilateral RLN involvement in thyroid cancer, first, sharp dissection should be performed, and if this is impossible, a simultaneous RLN reconstruction procedure should be adopted whenever possible.


1989 ◽  
Vol 98 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Gayle E. Woodson

The cricothyroid muscle (CT) appears to be an accessory muscle of respiration. Phasic inspiratory contraction is stimulated by increasing respiratory demand. Reflex activation of the CT may be responsible for the paramedian position of the vocal folds, and hence airway obstruction, in patients with bilateral recurrent laryngeal nerve (RLN) paralysis. Previous research has demonstrated the influence of superior laryngeal nerve (SLN) afferents on CT activity. The present study addresses the effects of vagal and RLN afferents. Electromyographic activity of the CT and right posterior cricoarytenoid muscle was monitored in anesthetized cats during tracheotomy breathing and in response to tracheal or upper airway occlusion in the intact animal. This was repeated following left RLN transection, bilateral vagotomy, and bilateral SLN transection. Vagotomy abolished CT response to tracheal occlusion and markedly reduced the response to upper airway occlusion. Vocal fold position following RLN transection appeared to correlate with CT activity; however, observed changes were minor.


1993 ◽  
Vol 109 (6) ◽  
pp. 1043-1051 ◽  
Author(s):  
Hong-Shik Choi ◽  
Gerald S. Berke ◽  
Ming Ye ◽  
Jody Kreiman

The function of the posterior cricoarytenoid (PCA) muscle in phonation has not been well documented. To date, several electromyographic studies have suggested that the PCA muscle is not simply an abductor of the vocal folds, but also functions in phonation. This study used an in vivo canine laryngeal model to study the function of the PCA muscle. Subglottic pressure and electroglottographic, photogiottographic, and acoustic waveforms were gathered from five adult mongrel dogs under varying conditions of nerve stimulation. Subglottic pressure, fundamental frequency, sound intensity, and vocal efficiency decreased with increasing stimulation of the posterior branch of the recurrent laryngeal nerve. These results suggest that the PCA muscle not only acts to brace the larynx against the anterior pull of the adductor and cricothyroid muscles, but also functions inhibitorily in phonation by controlling the phonatory glottal width.


2001 ◽  
Vol 24 (9) ◽  
pp. 1232-1235 ◽  
Author(s):  
G.L. Morren ◽  
S. Walter ◽  
H. Lindehammar ◽  
O. Hallböök ◽  
R. Sjödahl

2009 ◽  
Vol 250 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Ben Selvan ◽  
Srinivasa Babu ◽  
M J. Paul ◽  
Deepak Abraham ◽  
Prasanna Samuel ◽  
...  

1989 ◽  
Vol 67 (6) ◽  
pp. 2249-2256 ◽  
Author(s):  
H. R. Holmes ◽  
J. E. Remmers

Pulmonary vascular congestion or pulmonary embolism in humans produces shallow tachypnea, and indirect experimental evidence suggests that this characteristic breathing pattern may result from activation of vagal unmyelinated afferents from the lung. We have investigated, in decerebrate cats, reflex changes in breathing pattern and in the activation of the diaphragm, posterior cricoarytenoid, and thyroarytenoid muscles caused by activating C-fiber afferents in the vagus nerve. The right vagus nerve was sectioned distal to the origin of the recurrent laryngeal nerve, eliminating vagal afferent traffic although preserving motor innervation of the larynx on that side. The left cervical vagus was stimulated electrically, and efferent activation of the laryngeal muscles was avoided by cutting the left recurrent laryngeal nerve. Transmission to the brain of vagal afferent traffic resulting from this stimulation was controlled by graded cold block of the nerve cranial to the site of application of the stimulus. Activation of C-fibers, when A-fibers were blocked, significantly decreased respiratory period and amplitude of diaphragm inspiratory burst. In addition, this selective activation of vagal C-fibers augmented postinspiratory activity of the diaphragm and recruited phasic expiratory bursts in the thyroarytenoid. We conclude that, in unanesthetized decerebrate cats, afferent traffic of vagal C-fibers initiates a pontomedullary reflex that increases respiratory frequency, decreases tidal volume, and augments braking of expiratory airflow.


Sign in / Sign up

Export Citation Format

Share Document