Self-similar state of a weakly turbulent plasma

1980 ◽  
Vol 24 (3) ◽  
pp. 551-575 ◽  
Author(s):  
R. Balescu

The models of Vekshtein, Ryutov & Sagdeev (VRS), describing a marginally stable turbulent plasma sustaining an electric current, are shown to be incomplete by their neglect of the equations determining the spectral densities of the driving modes. An exhaustive study of these models including a detailed determination of the frequencies, spectral densities and turbulent energy densities, shows that, strictly speaking, there exists no self-similar turbulent state (SSTS). However, an approximate SSTS can be constructed, based on the finding that the tail of the spectral densities behaves self-similarly.

1982 ◽  
Vol 28 (2) ◽  
pp. 193-214 ◽  
Author(s):  
Qiu Xiaoming ◽  
R. Balescu

In this paper we generalize the formalism developed by Balescu and Paiva-Veretennicoff, valid for any kind of weak turbulence, for the determination of all the transport coefficients of an unmagnetized turbulent plasma, to the case of a magnetized one, and suggest a technique to avoid finding the inverse of the turbulent collision operator. The implicit plasmadynamical equations of a two-fluid plasma are presented by means of plasmadynamical variables. The anomalous transport coefficients appear in their natural places in these equations. It is shown that the necessary number of transport coefficients for describing macroscopically the magnetized turbulent plasma does not exceed the number for the unmagnetized one. The typical turbulent and gyromotion terms, representing dissipative effects peculiar to the magnetized system, which contribute to the frequency-dependent transport coefficients are clearly exhibited.


1998 ◽  
Vol 249-251 ◽  
pp. 175-179
Author(s):  
B. Kardynal ◽  
C.H.W. Barnes ◽  
E.H. Linfield ◽  
D.A. Ritchie ◽  
J.T. Nicholls ◽  
...  

1994 ◽  
Vol 5 (4) ◽  
pp. 537-557 ◽  
Author(s):  
M. Bertsch ◽  
R. Dal Passo ◽  
R. Kersner

We study the semi-empirical b—ε model which describes the time evolution of turbulent spots in the case of equal diffusivity of the turbulent energy density b and the energy dissipation rate ε. We prove that the system of two partial differential equations possesses a solution, and that after some time this solution exhibits self-similar behaviour, provided that the system has self-similar solutions. The existence of such self-similar solutions depends upon the value of a parameter of the model.


1984 ◽  
Vol 49 (1) ◽  
pp. 137-150 ◽  
Author(s):  
M. Lerman ◽  
J. B. Remmel

We say that a pair of r.e. sets B and C split an r.e. set A if B ∩ C = ∅ and B ∪ C = A. Friedberg [F] was the first to study the degrees of splittings of r.e. sets. He showed that every nonrecursive r.e. set A has a splitting into nonrecursive sets. Generalizations and strengthenings of Friedberg's result were obtained by Sacks [Sa2], Owings [O], and Morley and Soare [MS].The question which motivated both [LR] and this paper is the determination of possible degrees of splittings of A. It is easy to see that if B and C split A, then both B and C are Turing reducible to A (written B ≤TA and C ≤TA). The Sacks splitting theorem [Sa2] is a result in this direction, as are results by Lachlan and Ladner on mitotic and nonmitotic sets. Call an r.e. set A mitotic if there is a splitting B and C of A such that both B and C have the same Turing degree as A; A is nonmitotic otherwise. Lachlan [Lac] showed that nonmitotic sets exist, and Ladner [Lad1], [Lad2] carried out an exhaustive study of the degrees of mitotic sets.The Sacks splitting theorem [Sa2] shows that if A is r.e. and nonrecursive, then there are r.e. sets B and C splitting A such that B <TA and C <TA. Since B is r.e. and nonrecursive, we can now split B and continue in this manner to produce infinitely many r.e. degrees below the degree of A which are degrees of sets forming part of a splitting of A. We say that an r.e. set A has the universal splitting property (USP) if for any r.e. set D ≤T A, there is a splitting B and C of A such that B and D are Turing equivalent (written B ≡TD).


Author(s):  
Gu Shan-Jian ◽  
Yang Mao-Lin ◽  
Li Xiang-Yi

A method to measure the fuel distribution and the percentage of fuel flow rate captured by a V-gutter flameholder in a high speed airstream has been developed. The effects of configuration and size of the probe and temprature of the sample mixture in the probe on measurement have been investigated. The detailed determination of isokinetic sampling condition is described. The effects of V-gutter geometry on flowfield have been considered. The total experimental error is of the order ±5%.


TANSO ◽  
1969 ◽  
Vol 1969 (56) ◽  
pp. 156-161 ◽  
Author(s):  
Junichi Kon ◽  
Masahiko Okamura
Keyword(s):  

TANSO ◽  
1972 ◽  
Vol 1972 (68) ◽  
pp. 2-9
Author(s):  
Masahiko Okamura ◽  
Junichi Kon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document