On self-consistent waves and their stability in warm plasmas. Part 2. Instability of circularly polarized waves both in the presence and the absence of an ambient magnetic field

1980 ◽  
Vol 24 (1) ◽  
pp. 89-102 ◽  
Author(s):  
M. A. Lee ◽  
I. Lerche

The stability of a self-consistent, large-amplitude, circularly polarized wave in a warm plasma is investigated. For perturbations to the system propagating normal to the plane of circular polarization, a dispersion relation is derived employing an expansion in the nonlinear wave amplitude and the momentum of the plasma particles in the plane of polarization. Instability results both in the absence and presence of a large-scale magnetic field with a growth rate of the order of the nonlinear wave amplitude.

1979 ◽  
Vol 21 (1) ◽  
pp. 43-50 ◽  
Author(s):  
M. A. Lee ◽  
I. Lerche

We demonstrate that a self-consistent large-amplitude circularly polarized wave, propagating in a cold plasma in the presence of a large-scale magnetic field, is unstable if the constant bulk streaming speed of the plasma is zero in the frame in which the wave depends oniy on time. The growth rate is of the order of the plasma frequency or the gyrofrequency at short perturbation wavelengths, and is proportional to the perturbation wave vector at long wavelengths. For nonzero but small streaming the instability rate increases for one streaming direction and decreases for the other. We conclude that instability is the rule rather than the exception for large-amplitude waves in a cold plasma.


1979 ◽  
Vol 21 (1) ◽  
pp. 27-42 ◽  
Author(s):  
M. A. Lee ◽  
I. Lerche

We demonstrate that self-consistent large-amplitude longitudinal waves in a cold plasma are unstable to at least transverse perturbations, with an instability growth rate which is roughly of the order of the plasma frequency of the system. The instability statements derived here are conservative, since modes not discussed may be more unstable.


1976 ◽  
Vol 16 (3) ◽  
pp. 321-334 ◽  
Author(s):  
Einar Mjølhus

The stability of circularly polarized waves of finite amplitude propagating parallel to the magnetic field is studied. A set of equations for slowly varying waves of arbitrary amplitude is obtained. A discussion of the stability of the waces is based on this set of equations. Earlier results are confirmed; in addition we find that finite amplitude always promotes stability. An amplitude dependent stability condition for long waves, previously obtained by the author, is confirmed.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


2013 ◽  
Vol 9 (S302) ◽  
pp. 146-147
Author(s):  
Sudeshna Boro Saikia ◽  
Sandra V. Jeffers ◽  
Pascal Petit ◽  
Stephen Marsden ◽  
Julien Morin ◽  
...  

AbstractHD 206860 is a young planet (HN Peg b) hosting star of spectral type G0V and it has a potential debris disk around it. In this work we measure the longitudinal magnetic field of HD 206860 using spectropolarimetric data and we measure the chromospheric activity using Ca II H&K, H-alpha and Ca II infrared triplet lines.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


Sign in / Sign up

Export Citation Format

Share Document