Stability criterion for symmetric MHD equilibria by minimizing the potential energy

1978 ◽  
Vol 20 (3) ◽  
pp. 503-520 ◽  
Author(s):  
Johann W. Edenstrasser

The potential energy of an ideal static MHD plasma is minimized using the invariants of motion as variational constraints and assuming a general symmetry (dependence on two space variables only). For simplicity only the plasma-on- the-wall case is considered. The first variation yields a generalized Shafranov equation, the second the desired stability criterion. It is found that equilibria with a longitudinal current increasing monotonicaily towards the boundary are always stable with respect to symmetric modes. For equilibria with an outwardly decreasing current a sufficient criterion (for symmetric modes) is derived, which only requires the solution of a linear eigenvalue problem. The theory is applied to the straight circular cylinder and to the axisymmetric torus.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Chiara Guidi ◽  
Ali Maalaoui ◽  
Vittorio Martino

AbstractWe consider the coupled system given by the first variation of the conformal Dirac–Einstein functional. We will show existence of solutions by means of perturbation methods.


2020 ◽  
Vol 51 (4) ◽  
pp. 313-332
Author(s):  
Firooz Pashaie

A well-known conjecture of Bang Yen-Chen says that the only biharmonic Euclidean submanifolds are minimal ones. In this paper, we consider an extended condition (namely, $L_1$-biharmonicity) on non-degenerate timelike hypersurfaces of the pseudo-Euclidean space $E_1^4$. A Lorentzian hypersurface $x: M_1^3\rightarrow\E_1^4$ is called $L_1$-biharmonic if it satisfies the condition $L_1^2x=0$, where $L_1$ is the linearized operator associated to the first variation of 2-th mean curvature vector field on $M_1^3$. According to the multiplicities of principal curvatures, the $L_1$-extension of Chen's conjecture is affirmed for Lorentzian hypersurfaces with constant ordinary mean curvature in pseudo-Euclidean space $E_1^4$. Additionally, we show that there is no proper $L_1$-biharmonic $L_1$-finite type connected orientable Lorentzian hypersurface in $E_1^4$.


1983 ◽  
Vol 6 (2) ◽  
pp. 341-361
Author(s):  
Baruch cahlon ◽  
Alan D. Solomon ◽  
Louis J. Nachman

This paper presents a numerical method for finding the solution of Plateau's problem in parametric form. Using the properties of minimal surfaces we succeded in transferring the problem of finding the minimal surface to a problem of minimizing a functional over a class of scalar functions. A numerical method of minimizing a functional using the first variation is presented and convergence is proven. A numerical example is given.


The criteria for distinguishing between the maximum and minimum values of integrals have been investigated by many eminent mathematicians. In 1786 Legendre gave an imperfect discussion for the case where the function to be made a maximum is ʃ f (x,y, dy / dx ) dx . Nothing further seems to have been done till 1797, when Lagrange pointed out, in his ‘Théorie des Fonctions Analytiques,' published in 1797, that Legendre had supplied no means of showing th at the operations required for his process were not invalid through some of the multipliers becoming zero or infinite, and he gives an example to show that Legendre’s criterion, though necessary, was not sufficient. In 1806 Brunacci, an Italian mathematician, gave an investigation which has the important advantage of being short, easily compiehensible, and perfectly general in character, but which is open to the same objection as that brought against Legendre’s method. The next advance was made in 1836 by the illustrious Jacobi, who treats only of functions containing one dependent and one independent variable. Jacobi says (Todhunter, Art. 219, p. 243): “I have succeeded in supplying a great deficiency in the Calculus of Variations. In problems on maxima and minima which depend on this calculus no general rule is known for deciding whether a solution really gives a maximum or a minimum, or neither. It has, indeed, been shown that the question amounts to determining whether the integrals of a certain system of differential equations remain finite throughout the limits of the integral which is to have a maximum or a minimum value. But the integrals of these differential equations were not known, nor had any other method been discovered for ascertaining whether they remain finite throughout the required interval. I have, however, discovered that these integrals can be immediately obtained when We have integrated the differential equations which must be satisfied in order that the first variation may vanish.” Jacobi then proceeds to state the result of his transformation for the cases where the function to be integrated contains x, y, dy / dx , and x, y, dy / dx 2 , and in this solution the analysis appears free from all objection, though, where he proceeds to consider the general case, the investigation does not appear to be quite satisfactory in form, inasmuch as higher and higher differential coefficients of By are successively introduced into the discussion (see Art. 5). Jacobi’s analysis is much more complicated than Brunacci's, its advantage being that the coefficients used in the transformation could be easily determined; hence it supplied the means of ascertaining whether they became infinite or not.


2004 ◽  
Vol 2004 (11) ◽  
pp. 579-598 ◽  
Author(s):  
Bong Jin Kim ◽  
Byoung Soo Kim ◽  
David Skoug

We establish the various relationships that exist among the integral transformℱα,βF, the convolution product(F∗G)α, and the first variationδFfor a class of functionals defined onK[0,T], the space of complex-valued continuous functions on[0,T]which vanish at zero.


1972 ◽  
Vol 95 (3) ◽  
pp. 417 ◽  
Author(s):  
William K. Allard

Sign in / Sign up

Export Citation Format

Share Document