linear eigenvalue problem
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 47 (6) ◽  
Author(s):  
Andreas Kleefeld

AbstractThe hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than 1 + 10− 3. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.


2021 ◽  
Author(s):  
Johannes Kalliauer ◽  
Michał Malendowski ◽  
Herbert A. Mang

AbstractThe vertices of two specific eigenvectors, obtained from a novel linear eigenvalue problem, describe two curves on the surface of an N-dimensional unit hypersphere. N denotes the number of degrees of freedom in the framework of structural analysis by the Finite Element Method. The radii of curvature of these two curves are 0 and 1. They correlate with pure stretching and pure bending, respectively, of structures. The two coefficient matrices of the eigenvalue problem are the tangent stiffness matrix at the load level considered and the one at the onset of loading. The goals of this paper are to report on the numerical verification of the aforesaid geometric-mechanical synergism and to summarize current attempts of its extension to combinations of stretching and bending of structures.


2021 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe Jayashinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MAT LAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


2021 ◽  
Author(s):  
Mir Tahmaseb Kashani ◽  
Seyed M. Hashemi

Free vibration analysis of beams with single delamination undergoing bending-torsion coupling is made, using traditional finite element technique. The Galerkin weighted residual method is applied to convert the coupled differential equations of motion into to a discrete problem, where, in addition to the conventional mass and stiffness matrices, a delamination stiffness matrix, representing the extra stiffening effects at the delamination tips, is introduced. The linear eigenvalue problem resulting from the discretization along the length of the beam is solved to determine the frequencies and modes of free vibration. Both “free mode” and “constrained mode” delamination models are considered in formulation, and it is shown that the continuity (both kinematic and force) conditions at the beam span-wise locations corresponding to the extremities of the delaminated region, in particular, play a great role in “free mode” model formulation. Current trends in the literature are examined, and insight into different types of modeling techniques and constraint types are introduced. In addition, the data previously available in the literature and those obtained from a finite element-based commercial software are utilized to validate the presented modeling scheme and to verify the correctness of natural frequencies of the systems analyzed here. The paper ends with general discussions and conclusions on the presented theories and modeling approaches.


2021 ◽  
Author(s):  
Mir Tahmaseb Kashani ◽  
Seyed M. Hashemi

Free vibration analysis of beams with single delamination undergoing bending-torsion coupling is made, using traditional finite element technique. The Galerkin weighted residual method is applied to convert the coupled differential equations of motion into to a discrete problem, where, in addition to the conventional mass and stiffness matrices, a delamination stiffness matrix, representing the extra stiffening effects at the delamination tips, is introduced. The linear eigenvalue problem resulting from the discretization along the length of the beam is solved to determine the frequencies and modes of free vibration. Both “free mode” and “constrained mode” delamination models are considered in formulation, and it is shown that the continuity (both kinematic and force) conditions at the beam span-wise locations corresponding to the extremities of the delaminated region, in particular, play a great role in “free mode” model formulation. Current trends in the literature are examined, and insight into different types of modeling techniques and constraint types are introduced. In addition, the data previously available in the literature and those obtained from a finite element-based commercial software are utilized to validate the presented modeling scheme and to verify the correctness of natural frequencies of the systems analyzed here. The paper ends with general discussions and conclusions on the presented theories and modeling approaches.


2021 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe Jayashinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MAT LAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


Author(s):  
Camilo F. Silva ◽  
Laura Prieto ◽  
Maximiliano Ancharek ◽  
Pablo Marigliani ◽  
Georg A. Mensah

Abstract The aim of the present study is to efficiently calculate parametric thermoacoustic maps of typical combustion chambers. Two configurations are considered: an academic configuration based on a Rijke tube, and an industrial combustion chamber, which is the core of a recently developed micro-turbine for power generation. Such maps can be understood as the collection of loci of thermoacoustic eigen frequencies obtained under systematic variations of some defined parameters, while considering the Helmholtz equation as the thermoacoustic model of interest. In this study we consider variations on two parameters: the gain n and time-delay τ associated with a generic flame response model. We also show the feasibility of the proposed approach when considering more realistic flame responses. A straight-forward way to calculate such a thermoacoustic map is by solving the Helmholtz equation, and, thus, the corresponding non-linear eigenvalue problem, one time per parameter combination. With that approach, the non-linear eigenvalue problem needs to be solved hundreds or thousands of times if an adequate resolution of the thermoacoustic map is sought. Such a strategy may be computationally unaffordable. In order to overcome this difficulty, the present work utilizes an adjoint-based, high-order perturbation method. The actual eigenvalue problem is only solved once at a baseline point. After applying the perturbation equations at that point, a polynomial rational function — the Padé approximant — is obtained to estimate the eigen-frequency drift that results for a small or large perturbation in the flame response. It is demonstrated, for both academic and industrial test cases, that the obtained maps are accurate. Additionally, it is shown that these maps reveal a large variety of thermoacoustic features, such as stability boundaries, intrinsic thermoacoustic modes, and exceptional points. The numerical costs for such calculations are negligible even for the industrial combustion chamber investigated.


Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 2
Author(s):  
Luis M. Hervella-Nieto ◽  
Andrés Prieto ◽  
Sara Recondo

During the last decade, several authors have addressed that the Perfectly Matched Layers (PML) technique can be used not only for the computation of the near-field in time-dependent and time-harmonic scattering problems, but also to compute numerically the resonances in open cavities. Despite such complex resonances are not natural eigen-frequencies of the physical system, the numerical determination of this kind of eigenvalues provides information about the model, what can be used in further applications. The present work will be focused on two main specific goals—firstly, the mathematical analysis of the frequency-dependent highly non-linear eigenvalue problem associated to the computation of resonances with the standard PML technique. Second, the implementation of a robust numerical method to approximate resonances in open cavities.


2020 ◽  
Vol 34 (05) ◽  
pp. 2050070
Author(s):  
Y. Hanif ◽  
U. Saleem

In this paper, we present a coupled sine-Gordon (CSG) system, which describes the dynamics of two deoxyribonucleic acid (DNA) twisting strands in open configuration. We investigate the associated linear eigenvalue problem of the CSG system and obtain generalized formulae for multiple soliton solutions by employing the Darboux transformation (DT). Explicit expressions of one- and two-kink and line soliton solutions, single breather and first-order degenerate solutions are obtained by using particular solutions to the associated linear eigenvalue problem. We also present the dynamics of the different solutions.


2019 ◽  
Vol 90 (1) ◽  
pp. 147-171
Author(s):  
Roman Lewandowski ◽  
Przemysław Wielentejczyk

Abstract Planar frame structures made of a viscoelastic material are considered in the paper. The technically very important structures made of a homogenous material are contemplated. A family of rheological models (classic and fractional) are used to describe the mechanical properties of the viscoelastic material. In particular, the dynamic characteristics of the structures are of interest. A numerically very efficient method is proposed to determine such characteristics. The method requires the solution to the linear eigenvalue problem for corresponding elastic structures and the solution to a nonlinear, algebraic equation. The presented method is much more efficient than other methods where, very often, the continuation method is used to solve the nonlinear eigenvalue problem. The influence of temperature changes on dynamic characteristics is analyzed using the frequency–temperature principle. The results of several parametric analyses are presented and discussed. For the first time, the influence of temperature on the dynamic characteristics of beams has been studied in detail.


Sign in / Sign up

Export Citation Format

Share Document