Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma

2009 ◽  
Vol 75 (1) ◽  
pp. 99-110 ◽  
Author(s):  
FATEMA TANJIA ◽  
A. A. MAMUN

AbstractA dusty plasma consisting of negatively charged cold dust, adiabatic hot ions, and inertia-less adiabatic hot electrons has been considered. The adiabatic effects of electrons and ions on the basic properties of electro-acoustic solitary waves associated with different types of electro-acoustic (viz. ion-acoustic (IA), dust ion-acoustic (DIA), and dust acoustic (DA)) waves are thoroughly investigated by the reductive perturbation method. It is found that the basic properties of the IA, DIA, and DA waves are significantly modified by the adiabatic effects of ions and inertia-less electrons. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

2009 ◽  
Vol 75 (3) ◽  
pp. 413-431 ◽  
Author(s):  
A. A. MAMUN ◽  
N. JAHAN ◽  
P. K. SHUKLA

AbstractWe consider an adiabatic dusty plasma containing adiabatic inertialess electrons, adiabatic ions, and adiabatic negatively charged dust. The basic features of the dust–ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in such an adiabatic dusty plasma are investigated using the reductive perturbation method, which is valid for small amplitude SWs, and by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The combined effects of the adiabaticity of electrons/ions and negatively charged static/mobile dust on the basic features (polarity, speed, amplitude and width) of small as well as arbitrary amplitude DIA and DA SWs are examined explicitly. It is found that the combined effects of the adiabaticity of electrons/ions and negatively charged static/mobile dust significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are discussed briefly.


2009 ◽  
Vol 75 (4) ◽  
pp. 475-493 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust-ion-acoustic (DIA) solitary waves, and their multi-dimensional instability in a magnetized multi-ion dusty plasma containing hot adiabatic inertia-less electrons, cold positive and negative ions, and negatively charged static dust have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. The combined effects of electron adiabaticity, external magnetic field (obliqueness), and negative ions, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes, and the presence of negative ions. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2014 ◽  
Vol 80 (4) ◽  
pp. 565-579 ◽  
Author(s):  
Akbar Sabetkar ◽  
Davoud Dorranian

The nonlinear Zakharov–Kuznetsov and the modified Zakharov–Kuznetsov equations are derived for dust-acoustic solitary waves (DASWs) in a magnetized four-component dusty plasma system comprising negatively charged cold dust, non-extensive electrons, and two-temperature thermal ions using standard reductive perturbation method. The combined effects of electron non-extensivity, strength of magnetic field, and its obliqueness on the DASWs profile are analyzed. Different ranges of non-extensive q-parameter are considered. Our results show that solitary waves, that their amplitude and width of which depend sensitively on the q-non-extensive parameter, can exist. Due to electron non-extensivity, our dusty plasma model can admit positive potential as well as negative potential solitons. The strength of magnetic field has no effect on the amplitude of solitary waves, whereas its obliqueness affects both amplitude and width of the solitary waves structure. Results show that the amplitude of soliton increases with increasing the velocity of soltion. For any magnitude of q there is an extremum for the direction of the magnetic field at which the width of soliton is maximum.


A theoretical work has done to observe the existence of dust ion-acoustic (DIA) solitary waves (SWs) in a multi-ion dusty plasma system consisting of inertial positive and negative ions, Maxwell’s electrons, and arbitrary charged stationary dust. In this short communication, our research declares that with these components the derivation of Korteweg-de Vries (K-dV) and mixed K-dV (mK-dV) is possible. Here reductive perturbation method has been employed in all these approaches. The first K-dV equation has been derived which gave both bright and dark solitons but for a very limited region. Then the mK-dV equation has been derived that gave bright soliton for a large region, but no dark soliton has been observed.


2010 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
K. S. ASHRAFI ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document