scholarly journals Dispersive magnetized waves in the solar wind plasma

2010 ◽  
Vol 77 (3) ◽  
pp. 357-365 ◽  
Author(s):  
B. DASGUPTA ◽  
DASTGEER SHAIKH ◽  
P. K. SHUKLA

AbstractWe derive a generalized linear dispersion relation of waves in a strongly magnetized, compressible, homogeneous and isotropic quasi-neutral plasma. Starting from a two-fluid model, describing distinguishable electron and ion fluids, we obtain a six-order linear dispersion relation of magnetized waves that contains effects due to electron and ion inertia, finite plasma beta and angular dependence of phase speed. We investigate propagation characteristics of these magnetized waves in a regime where scale lengths are comparable with electron and ion inertial length scales. This regime corresponds essentially to the solar wind plasma, where length scales, comparable with ion cyclotron frequency, lead to dispersive effects. These scales in conjunction with linear waves present a great deal of challenges in understanding the high-frequency, small-scale dynamics of turbulent fluctuations in the solar wind plasma.

1992 ◽  
pp. 95-98
Author(s):  
Ø. Sandbæk ◽  
E. Leer ◽  
T.E. Holzer

1966 ◽  
Vol 16 (14) ◽  
pp. 628-631 ◽  
Author(s):  
P. A. Sturrock ◽  
R. E. Hartle

2020 ◽  
Author(s):  
Alexander Vinogradov ◽  
Anton Artemyev ◽  
Ivan Vasko ◽  
Alexei Vasiliev ◽  
Anatoly Petrukovich

<p>According to Helios, Ulysses, New Horizons measurements at a wide range of distances from the Sun, radial evolution of solar wind ion temperature significantly deviates from the adiabatic expansion model:  additional heating of the solar wind plasma is required to describe observational data. Solution of the solar wind heating problem is extremely important both for understanding the structure of the heliosphere and for adequately describing the atmospheres of distant stars. Solar wind magnetic field is turbulent and this turbulence is dominated by numerous small-scale high-amplitude coherent structures – such as quasi-1D discontinuities. Modern theoretical models predict that quasi-1D discontinuities can play important role in solar wind heating. We collected the statistics of MMS observations of thin quasi-1D discontinuities in the solar wind to reveal their characteristics. Analyzing observational data, we construct the discontinuity model and use it to consider non-adiabatic interaction of ions with solar wind discontinuities. We mainly focus on discontinuity roles in solar wind ion scattering and thermalization. This presentation shows how discontinuity configuration affects the scattering rates.</p>


Author(s):  
Quentin Fontaine ◽  
Agostino Apra ◽  
Giovanni Lerario ◽  
Elisabeth Giacobino ◽  
Alberto Bramati ◽  
...  

2015 ◽  
Vol 766 ◽  
pp. 326-336 ◽  
Author(s):  
Tore Magnus A. Taklo ◽  
Karsten Trulsen ◽  
Odin Gramstad ◽  
Harald E. Krogstad ◽  
Atle Jensen

AbstractWe report laboratory experiments and numerical simulations of the Zakharov equation, designed to have sufficient resolution in space and time to measure the dispersion relation for random surface gravity waves. The experiments and simulations are carried out for a JONSWAP spectrum and Gaussian spectra of various bandwidths on deep water. It is found that the measured dispersion relation deviates from the linear dispersion relation above the spectral peak when the bandwidth is sufficiently narrow.


Sign in / Sign up

Export Citation Format

Share Document