Non-adiabatic interaction of ions with solar wind discontinuities

Author(s):  
Alexander Vinogradov ◽  
Anton Artemyev ◽  
Ivan Vasko ◽  
Alexei Vasiliev ◽  
Anatoly Petrukovich

<p>According to Helios, Ulysses, New Horizons measurements at a wide range of distances from the Sun, radial evolution of solar wind ion temperature significantly deviates from the adiabatic expansion model:  additional heating of the solar wind plasma is required to describe observational data. Solution of the solar wind heating problem is extremely important both for understanding the structure of the heliosphere and for adequately describing the atmospheres of distant stars. Solar wind magnetic field is turbulent and this turbulence is dominated by numerous small-scale high-amplitude coherent structures – such as quasi-1D discontinuities. Modern theoretical models predict that quasi-1D discontinuities can play important role in solar wind heating. We collected the statistics of MMS observations of thin quasi-1D discontinuities in the solar wind to reveal their characteristics. Analyzing observational data, we construct the discontinuity model and use it to consider non-adiabatic interaction of ions with solar wind discontinuities. We mainly focus on discontinuity roles in solar wind ion scattering and thermalization. This presentation shows how discontinuity configuration affects the scattering rates.</p>

2021 ◽  
Author(s):  
Daniele Telloni ◽  

<p>Radial alignments between pairs of spacecraft is the only way to observationally investigate the turbulent evolution of the solar wind as it expands throughout interplanetary space. On September 2020 Parker Solar Probe (PSP) and Solar Orbiter (SolO) were nearly perfectly radially aligned, with PSP orbiting around its perihelion at 0.1 au (and crossing the nominal Alfvén point) and SolO at 1 au. PSP/SolO joint observations of the same solar wind plasma allow the extraordinary and unprecedented opportunity to study how the turbulence properties of the solar wind evolve in the inner heliosphere over the wide distance of 0.9 au. The radial evolution of (i) the MHD properties (such as radial dependence of low- and high-frequency breaks, compressibility, Alfvénic content of the fluctuations), (ii) the polarization status, (iii) the presence of wave modes at kinetic scale as well as their distribution in the plasma instability-temperature anisotropy plane are just few instances of what can be addressed. Of furthest interest is the study of whether and how the cascade transfer and dissipation rates evolve with the solar distance, since this has great impact on the fundamental plasma physical processes related to the heating of the solar wind. In this talk I will present some of the results obtained by exploiting the PSP/SolO alignment data.</p>


2009 ◽  
Vol 16 (2) ◽  
pp. 219-232 ◽  
Author(s):  
G. G. Howes

Abstract. The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.


2010 ◽  
Vol 77 (3) ◽  
pp. 357-365 ◽  
Author(s):  
B. DASGUPTA ◽  
DASTGEER SHAIKH ◽  
P. K. SHUKLA

AbstractWe derive a generalized linear dispersion relation of waves in a strongly magnetized, compressible, homogeneous and isotropic quasi-neutral plasma. Starting from a two-fluid model, describing distinguishable electron and ion fluids, we obtain a six-order linear dispersion relation of magnetized waves that contains effects due to electron and ion inertia, finite plasma beta and angular dependence of phase speed. We investigate propagation characteristics of these magnetized waves in a regime where scale lengths are comparable with electron and ion inertial length scales. This regime corresponds essentially to the solar wind plasma, where length scales, comparable with ion cyclotron frequency, lead to dispersive effects. These scales in conjunction with linear waves present a great deal of challenges in understanding the high-frequency, small-scale dynamics of turbulent fluctuations in the solar wind plasma.


2006 ◽  
Vol 8 ◽  
pp. 17-17 ◽  
Author(s):  
S Peter Gary ◽  
Lin Yin ◽  
Dan Winske ◽  
John T Steinberg ◽  
Ruth M Skoug

1983 ◽  
Vol 88 (A12) ◽  
pp. 9919 ◽  
Author(s):  
Steven J. Schwartz ◽  
Eckart Marsch

Author(s):  
G. G. Howes

A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.


2020 ◽  
Author(s):  
Alexander Khokhlachev ◽  
Maria Riazantseva ◽  
Liudmila Rakhmanova ◽  
Yuri Yermolaev ◽  
Irina Lodkina ◽  
...  

<p>The boundaries between large-scale solar wind streams are often accompanied by sharp changes in helium abundance.  Wherein the high value of relative helium abundance is known as a sign of some large-scale solar wind structures ( for example magnetic clouds). Unlike the steady slow solar wind where the helium abundance is rather stable and equals ~5%, in magnetic clouds its value can grow significantly up to 20% and more, and at the same time helium component becomes more variable.  In this paper we analyze the small-scale variations of solar wind plasma parameters, including the helium abundance variations in different large-scale solar wind streams, especially in magnetic clouds and Sheath regions before them. We use rather long intervals of simultaneous measurements at Spektr-R (spectrometer BMSW) and Wind (spectrometer 3DP) spacecrafts.  We choose the intervals with rather high correlation  level of plasma parameters as a whole to be sure that we are deal with the same plasma stream.  The intervals associated with different large scale-solar wind structures are selected by using of our catalog ftp://ftp.iki.rssi.ru/pub/omni/catalog/. For selected intervals we examine cross-correlation function for Spektr-R and Wind measurements  to reveal the local spatial inhomogeneities by helium abundance which can be observed only at one of spacecrafts, and we determine properties of ones. Such inhomogeneities can be generate by turbulence, which is typically getting more intense in the considered disturbed intervals in the solar wind. The work is supported by Russian Science Foundation grant 16-12-10062.</p>


1994 ◽  
Vol 154 ◽  
pp. 407-421
Author(s):  
O Steiner

Two types of model calculations for small scale magnetic flux tubes in the solar atmosphere are reviewed. In the first kind, one follows the temporal evolution governed by the complete set of the MHD and radiative transfer equations to a (quasi) stationary solution. From such a solution the continuum contrasts of a photospheric flux tube in the visible and in the infrared continuum at 1.6 μm have been computed and are briefly discussed. The second, more empirical type of method assumes the flux tubes to be in magnetohydrostatic equilibrium. It is computationally faster and more flexible and allows us to explore a wide range of parameters. Models and insights obtained from such parameter studies are discussed in some detail. These include an explanation for the peculiar variation of the area asymmetry of Stokes V profiles across the solar disk in terms of mass motions in the surroundings of magnetic flux tubes.Furthermore, a two-dimensional model of the lower chromosphere that has been developed is presented. Emphasis is laid on the effect of thermal bifurcation of the lower chromosphere on the structure of the chromospheric magnetic field. If the cool carbon monoxide clouds, observed in the infrared, occupy the non-magnetic regions, the flux tubes expand very strongly and form a magnetic canopy with an almost horizontal base. This has consequences for the spatial distribution of the Ca II K spectral line emission.Finally, some consideration is given to the formation and destruction of intense magnetic flux tubes in the solar photosphere. The formation is described as a consequence of the flux expulsion process that leads to a convective instability. A possible observational signature of this mechanism is proposed.


2010 ◽  
Vol 17 (6) ◽  
pp. 785-793 ◽  
Author(s):  
S. R. Spangler ◽  
A. H. Savage ◽  
S. Redfield

Abstract. The Very Local Interstellar Medium (VLISM) contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Information provided by these spectroscopic measurements includes values for ξ, the root-mean-square velocity fluctuation due to turbulence in these clouds, and T, the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. We ask if the spectroscopically-deduced parameters such as ξ and T depend on the direction on the sky. We also consider the degree to which a single temperature T and turbulence parameter ξ account for the spectral line widths of ions with a wide range of masses. A preliminary examination of the published data shows no evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence. Possible physical reasons for these differences are discussed.


2021 ◽  
Vol 70 ◽  
pp. 335-358
Author(s):  
Robert Connon Smith ◽  
Nigel Weiss

Leon Mestel was best known for his wide-ranging work on cosmic magnetism, but he also worked on an equally wide range of non-magnetic problems in astrophysics, from star and galaxy formation to white dwarf cooling. Despite his work being primarily theoretical and highly mathematical, he was always aware of all the relevant observational data that both needed to be explained and also provided constraints for his theoretical models. He was internationally recognized as an authority on the influence of magnetic fields in astronomy, receiving a number of significant honours. He also had a deserved reputation for scrupulous honesty and integrity in his work. His life's work culminated in the publication of two editions of a magisterial monograph on stellar magnetism. He collaborated widely, influenced many other researchers and was in great demand as a conference speaker. He was also a conscientious academic, taking his full part in departmental teaching and administration, and a delightful companion and friend to all who knew him. He was well known for his many stories and jokes, which were widely enjoyed. His outside interests included being a long-standing member of the Editorial Board of this publication, Biographical Memoirs of Fellows of the Royal Society .


Sign in / Sign up

Export Citation Format

Share Document