electromagnetic mode
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Qizhi Yan ◽  
Runkun Chen ◽  
Zhu Yuan ◽  
Peining Li ◽  
Xinliang Zhang

Abstract We theoretically propose and study in-plane anisotropic acoustic phonon polaritons (APhPs) based on a layered structure consisting of a monolayer (or few layers) α-phase molybdenum trioxide (α-MoO3) sandwiched between two metal layers. We find that the APhPs in the proposed sandwiched structures are a canalization (highly directional) electromagnetic mode propagating along with the layers and at the same time exhibit extreme electromagnetic-field confinement surpassing any other type of phonon-polariton modes. When a double layer of α-MoO3 is sandwiched by two Au layers, twisting the two α-MoO3 layers can adjust the interlayer polaritonic coupling and thus manipulate the in-plane propagation of the highly confined APhPs. Our results illustrate that the metal-MoO3-metal sandwiched structures are a promising platform for light guiding and manipulation at ultimate scale.


Author(s):  
Qinghu Yang ◽  
Zhipeng Chen ◽  
Zhigang Hao ◽  
Yangming Zhao ◽  
Xin Xu ◽  
...  

Abstract In order to measure boundary electrostatic and magnetic fluctuations simultaneously, a set of combined Langmuir-magnetic probe (CLMP) has been designed and built on Joint-Texas Experimental Tokamak (J-TEXT). The probe consists of 8 graphite probe pins and a 3D magnetic probe, driven by a mechanical pneumatic device. By means of simulation, the shielding effect of the graphite sleeve on the magnetic fluctuation signal is explored, and the influence of the eddy current was reduced by cutting the graphite sleeve. In the experiment, it has been verified that the mutual inductance of electromagnetic signals can be ignored. And a 70~90kHz electromagnetic mode is observed around the last closed magnetic surface (LCFS). The establishment of CLMP provides data for the exploration of the coupling of electrostatic and magnetic fluctuations.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yang Li ◽  
C. T. Chan ◽  
Eric Mazur

AbstractMetamaterials with a Dirac-like cone dispersion at the center of the Brillouin zone behave like an isotropic and impedance-matched zero refractive index material at the Dirac-point frequency. Such metamaterials can be realized in the form of either bulk metamaterials with efficient coupling to free-space light or on-chip metamaterials that are efficiently coupled to integrated photonic circuits. These materials enable the interactions of a spatially uniform electromagnetic mode with matter over a large area in arbitrary shapes. This unique optical property paves the way for many applications, including arbitrarily shaped high-transmission waveguides, nonlinear enhancement, and phase mismatch-free nonlinear signal generation, and collective emission of many emitters. This review summarizes the Dirac-like cone-based zero-index metamaterials’ fundamental physics, design, experimental realizations, and potential applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zlatko K. Minev ◽  
Zaki Leghtas ◽  
Shantanu O. Mundhada ◽  
Lysander Christakis ◽  
Ioan M. Pop ◽  
...  

AbstractSuperconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are a leading platform for emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and optimization of the spectrum, nonlinear interactions, and dissipation in multi-mode distributed quantum circuits. Here we present a method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode. The EPR, a number between zero and one, quantifies how much of the mode energy is stored in each element. The EPRs obey universal constraints and are calculated from one electromagnetic-eigenmode simulation. They lead directly to the system quantum Hamiltonian and dissipative parameters. The method provides an intuitive and simple-to-use tool to quantize multi-junction circuits. We experimentally tested this method on a variety of Josephson circuits and demonstrated agreement within several percents for nonlinear couplings and modal Hamiltonian parameters, spanning five orders of magnitude in energy, across a dozen samples.


High Voltage ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. 688-696
Author(s):  
Feng Bin ◽  
Feng Wang ◽  
Qiuqin Sun ◽  
She Chen ◽  
Jingmin Fan ◽  
...  

2020 ◽  
Vol 38 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Daljeet Kaur ◽  
Suresh C. Sharma ◽  
R.S. Pandey ◽  
Ruby Gupta

AbstractWe investigate the Weibel instability (WI) in a dusty plasma which is driven to oscillation by the addition of dust grains in the plasma. Our analysis predicts the existence of three modes in a dusty plasma. There is a high-frequency electromagnetic mode, whose frequency increases with an increase in the relative number density of dust grains and which approaches instability due to the presence of dust grains. The second mode is a damping mode which exists due to dust charge fluctuations in plasma. The third mode is the oscillating WI mode. The dispersion relation and the growth rate of various modes in the dusty plasma are derived using the first-order perturbation theory. The effect of dust grain parameters on frequency and growth rate is also studied and reported.


Author(s):  
Aleksey Tyapin ◽  
Evgeniy Kinev

The results of modeling the electromagnetic mode of a two-phase two-level transistor inverter when working on a shortened linear metallurgical MHD machine are considered.


Sign in / Sign up

Export Citation Format

Share Document