pseudopotential approach
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 11)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. T. Ahams ◽  
A. Shaari ◽  
R. Ahmed ◽  
N. F. Abdul Pattah ◽  
M. C. Idris ◽  
...  

AbstractThe MAX phase materials such as layered ternary carbides that simultaneously exhibit characteristics of metallic and ceramic materials have received substantial interest in recent years. Here, we present a systematic investigation of the electronic, structural stabilities, and elastic properties of Ti3(Al1−nSin)C2 (n = 0,1) MAX phase materials using the ab initio method via a plane-wave pseudopotential approach within generalized-gradient-approximations. The computed electronic band structures and projected density of states show that both Ti3SiC2 and Ti3AlC2 are metallic materials with a high density of states at the Fermi level emanating mainly from Ti-3d. Using the calculated elastic constants, the mechanical stability of the compounds was confirmed following the Born stability criteria for hexagonal structures. The Cauchy pressure and the Pugh’s ratio values establish the brittle nature of the Ti3SiC2 and Ti3AlC2 MAX phase materials. Due to their intriguing physical properties, these materials are expected to be suitable for applications such as thermal shock refractories and electrical contact coatings.


2021 ◽  
Author(s):  
Nupur P. Vora ◽  
Priyank Kumar ◽  
S. M. Vyas ◽  
N. K. Bhatt ◽  
P. R. Vyas ◽  
...  

2020 ◽  
Author(s):  
S. Ahams ◽  
A. Shaari ◽  
Rashid Ahmed ◽  
N. Abdul Pattah ◽  
M. Idris ◽  
...  

Abstract The MAX phase materials such as layered ternary carbides that simultaneously exhibit characteristics of metallic and ceramic materials have received substantial interest in recent years. Here, we present a systematic investigation of the electronic, structural stabilities, and elastic properties of Ti3(Al1-nSin)C2 (n = 0,1) MAX phase materials using the ab initio method via a plane-wave pseudopotential approach within generalized-gradient-approximations. The computed electronic band structures and projected density of states show that both Ti3SiC2 and Ti3AlC2 are metallic materials with a high density of states at the Fermi level emanating mainly from Ti-3d. Using the calculated elastic constants, the mechanical stability of the compounds was confirmed following the Born stability criteria for hexagonal structures. The Cauchy pressure and the Pugh’s ratio values establish the brittle nature of the Ti3SiC2 and Ti3AlC2 MAX phase materials. Due to their intriguing physical properties, these materials are expected to be suitable for applications such as thermal shock refractories and electrical contact coatings.


2020 ◽  
Vol 5 (4) ◽  
pp. 74
Author(s):  
Jin Zhang ◽  
Jeevake Attapattu ◽  
Jeffrey M. McMahon

Internal energies, enthalpies, phonon dispersion curves, and superconductivity of atomic metallic hydrogen are calculated. The standard use of pseudopotentials in density-functional theory are compared with full Coulomb-potential, all-electron linear muffin-tin orbital calculations. Quantitatively similar results are found as far as internal energies are concerned. Larger differences are found for phase-transition pressures; significant enough to affect the phase diagram. Electron–phonon spectral functions α2F(ω) also show significant differences. Against expectation, the estimated superconducting critical-temperature Tc of the first atomic metallic phase I41/amd (Cs-IV) at 500 GPa is actually higher.


2020 ◽  
Vol 75 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Nimardeep Kaur ◽  
Rupinder Kaur ◽  
N. S. Saini

AbstractAn investigation of nonlinear ion acoustic (IA) cnoidal waves in a magnetised quantum plasma is presented by using spin evolution quantum hydrodynamics model, in which inertial classical ions and degenerate inertialess electrons with both spin-up and spin-down states taken as separate species are considered. The Korteweg–de Vries equation is derived using the reductive perturbation method. Further, using the Sagdeev pseudopotential approach, the solution for IA cnoidal waves is derived with suitable boundary conditions. There is the formation of only positive potential cnoidal, and in the limiting case, positive solitary waves are observed. The effects of density polarisation and other plasma parameters on the characteristic features of cnoidal and solitary waves have been analysed numerically. It is seen that the spin density polarisation significantly affects the characteristics of cnoidal structures as we move from strongly spin-polarised (μ = 1) to a zero spin-polarisation case (μ = 0). The results obtained in the present investigation may be useful in comprehending various nonlinear excitations in dense astrophysical regions, such as white dwarfs, neutron stars, and so on.


Sign in / Sign up

Export Citation Format

Share Document