scholarly journals A solvable model of Vlasov-kinetic plasma turbulence in Fourier–Hermite phase space

2018 ◽  
Vol 84 (1) ◽  
Author(s):  
T. Adkins ◽  
A. A. Schekochihin

A class of simple kinetic systems is considered, described by the one-dimensional Vlasov–Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan–Batchelor model of chaotic advection. The solution of the model is found in Fourier–Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier–Hermite spectrum is derived. Its asymptotics are $m^{-3/2}$ at low wavenumbers and high Hermite moments ($m$) and $m^{-1/2}k^{-2}$ at low Hermite moments and high wavenumbers ($k$). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 506
Author(s):  
Sho Nakade ◽  
Kazuki Kanki ◽  
Satoshi Tanaka ◽  
Tomio Petrosky

An interesting anomaly in the diffusion process with an apparently negative diffusion coefficient defined through the mean-square displacement in a one-dimensional quantum molecular chain model is shown. Nevertheless, the system satisfies the H-theorem so that the second law of thermodynamics is satisfied. The reason why the “diffusion constant” becomes negative is due to the effect of the phase mixing process, which is a characteristic result of the one-dimensionality of the system. We illustrate the situation where this negative “diffusion constant” appears.


1992 ◽  
Vol 57 (3-4) ◽  
pp. 241-248 ◽  
Author(s):  
B.I. Shraiman ◽  
A. Pumir ◽  
W. van Saarloos ◽  
P.C. Hohenberg ◽  
H. Chaté ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.


1997 ◽  
Vol 55 (5) ◽  
pp. 5073-5081 ◽  
Author(s):  
Alessandro Torcini ◽  
Helge Frauenkron ◽  
Peter Grassberger

1991 ◽  
Vol 118 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
M. A. Astaburuaga ◽  
Claudio Fernández ◽  
Víctor H. Cortés

SynopsisIn this paper we study the direct and inverse scattering problem on the phase space for a classical particle moving under the influence of a conservative force. We provide a formula for the scattering operator in the one-dimensional case and we settle the properties of the potential that can be deduced from it. We also study the question of recovering the shape of the barriers which can be seen from −∞ and ∞. An example is given showing that these barriers are not uniquely determined by the scattering operator.


2007 ◽  
Vol 62 (7-8) ◽  
pp. 368-372
Author(s):  
Woo-Pyo Hong

We report on the existence of a new family of stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation. By applying the paraxial ray approximation, we obtain the relation between the width and the peak amplitude of the stationary soliton in terms of the model parameters. We verify the analytical results by direct numerical simulations and show the stability of the stationary solitons.


Soft Matter ◽  
2020 ◽  
Vol 16 (30) ◽  
pp. 7052-7062
Author(s):  
S. M. H. Hashemi Amrei ◽  
Gregory H. Miller ◽  
Kyle J. M. Bishop ◽  
William D. Ristenpart

We derive a perturbation solution to the one-dimensional Poisson–Nernst–Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences.


Sign in / Sign up

Export Citation Format

Share Document