scholarly journals General formulas for adiabatic invariants in nearly periodic Hamiltonian systems

2020 ◽  
Vol 86 (6) ◽  
Author(s):  
J. W. Burby ◽  
J. Squire

While it is well known that every nearly periodic Hamiltonian system possesses an adiabatic invariant, extant methods for computing terms in the adiabatic invariant series are inefficient. The most popular method involves the heavy intermediate calculation of a non-unique near-identity coordinate transformation, even though the adiabatic invariant itself is a uniquely defined scalar. A less well-known method, developed by S. Omohundro, avoids calculating intermediate sequences of coordinate transformations but is also inefficient as it involves its own sequence of complex intermediate calculations. In order to improve the efficiency of future calculations of adiabatic invariants, we derive generally applicable, readily computable formulas for the first several terms in the adiabatic invariant series. To demonstrate the utility of these formulas, we apply them to charged-particle dynamics in a strong magnetic field and magnetic field-line dynamics when the field lines are nearly closed.

2020 ◽  
Vol 86 (2) ◽  
Author(s):  
Elena Elbarmi ◽  
Wrick Sengupta ◽  
Harold Weitzner

Understanding particle drifts in a non-symmetric magnetic field is of primary interest in designing optimized stellarators in order to minimize the neoclassical radial loss of particles. Quasisymmetry and omnigeneity, two distinct properties proposed to ensure radial localization of collisionless trapped particles in stellarators, have been explored almost exclusively for magnetic fields with nested flux surfaces. In this work, we examine radial particle confinement when all field lines are closed. We then study charged particle dynamics in the special case of a non-symmetric vacuum magnetic field with closed field lines obtained recently by Weitzner & Sengupta (Phys. Plasmas, vol. 27, 2020, 022509). These magnetic fields can be used to construct magnetohydrodynamic equilibria for low pressure. Expanding in the amplitude of the non-symmetric fields, we explicitly evaluate the omnigeneity and quasisymmetry constraints. We show that the magnetic field is omnigeneous in the sense that the drift surfaces coincide with the pressure surfaces. However, it is not quasisymmetric according to the standard definitions.


2019 ◽  
Vol 29 (5) ◽  
pp. 051104
Author(s):  
Anatoly Neishtadt ◽  
Anton Artemyev ◽  
Dmitry Turaev

Sign in / Sign up

Export Citation Format

Share Document