The gaps between sums of two squares

2013 ◽  
Vol 97 (539) ◽  
pp. 256-262 ◽  
Author(s):  
Peter Shiu

Problems concerning the setof numbers which are representable as sums of two squares have a long history. There are statements concerning W in the Arithmetic of Diophantus, who seemed to be aware of the famous identitywhich shows that the set W is ‘multiplicatively closed’. Since a square must be congruent to 0 or 1 (mod 4), it follows that members of W cannot be congruent to 3 (mod 4). Also, it is not difficult to show that a number of the form 4k + 3 must have a prime divisor of the same form dividing it an exact odd number of times. However, the definitive statement (see, for example, Chapter V in [1]) concerning members of W, namely that they have the form PQ2, where P is free of prime divisors p ≡ 3 (mod 4), was first given only in 1625 by the Dutch mathematician Albert Girard. It was also given a little later by Fermat, who probably had a proof of it, but the first published proof was by Euler in 1749.

2017 ◽  
Vol 39 (4) ◽  
pp. 889-897 ◽  
Author(s):  
ZOLTÁN BUCZOLICH

We show that $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, the number of distinct prime factors of $n$ and the number of distinct prime factors of $n$ counted according to multiplicity, are good weighting functions for the pointwise ergodic theorem in $L^{1}$. That is, if $g$ denotes one of these functions and $S_{g,K}=\sum _{n\leq K}g(n)$, then for every ergodic dynamical system $(X,{\mathcal{A}},\unicode[STIX]{x1D707},\unicode[STIX]{x1D70F})$ and every $f\in L^{1}(X)$, $$\begin{eqnarray}\lim _{K\rightarrow \infty }\frac{1}{S_{g,K}}\mathop{\sum }_{n=1}^{K}g(n)f(\unicode[STIX]{x1D70F}^{n}x)=\int _{X}f\,d\unicode[STIX]{x1D707}\quad \text{for }\unicode[STIX]{x1D707}\text{ almost every }x\in X.\end{eqnarray}$$ This answers a question raised by Cuny and Weber, who showed this result for $L^{p}$, $p>1$.


1966 ◽  
Vol 9 (4) ◽  
pp. 427-431 ◽  
Author(s):  
A. A. Gioia ◽  
M.V. Subbarao

In this note the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n ≥ 1, and L(l) = 0, w(l) = 1. An arithmetic function f is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1. It is known ([1], [3], [4]) that every multiplicative function f satisfies the identity1.1


1990 ◽  
Vol 32 (3) ◽  
pp. 317-327 ◽  
Author(s):  
M. Akbas ◽  
D. Singerman

Let Γ denote the modular group, consisting of the Möbius transformationsAs usual we denote the above transformation by the matrix remembering that V and – V represent the same transformation. If N is a positive integer we let Γ0(N) denote the transformations for which c ≡ 0 mod N. Then Γ0(N) is a subgroup of indexthe product being taken over all prime divisors of N.


1986 ◽  
Vol 99 (3) ◽  
pp. 447-456 ◽  
Author(s):  
Daniel Katz ◽  
L. J. Ratliff

If I and J are ideals in a Noetherian ring R, then I and J are projectively equivalent in case (Ii)a = (Jj)a for some positive integers i, j (where Ka denotes the integral closure in R of the ideal K) and the form ring F(R, I) of R with respect to I is the graded ring R/I ⊕ I/I2 ⊕ I2/I3 ⊕ …. These two concepts have played an important role in many research problems in commutative algebra, so they have been deeply studied and many of their properties have been discovered. In a recent paper [13] they were combined to show that a semi-local ring R is unmixed if and only if for every ideal J in R there exists a projectively equivalent ideal J in R such that every prime divisor of zero in F(R, J) has the same depth. It seems to us that results similar to this are interesting and potentially quite useful, so in this paper we prove several additional such theorems. Namely, it is shown that all ideals in all local rings have a projectively equivalent ideal whose form ring is fairly nice. Also, a characterization similar to the just mentioned result in [13] is given for the class of local rings whose completions have no embedded prime divisors of zero, and several analogous new characterizations are given for locally unmixed Noetherian rings. In particular, it is shown that if I is an ideal in an unmixed local ring R such that height(I) = l(I) (where l(I) denotes the analytic spread of I), then there exists a projectively equivalent ideal J in R such that Ass (F(R, J)) has exactly m elements, all minimal, where m is the number of minimal prime divisors of I (so if I is open, then F(R, J) has exactly one prime divisor of zero and is a locally unmixed Noetherian ring).


2013 ◽  
Vol 89 (3) ◽  
pp. 437-450 ◽  
Author(s):  
EMILY JENNINGS ◽  
PAUL POLLACK ◽  
LOLA THOMPSON

AbstractLet $\sigma (n)= {\mathop{\sum }\nolimits}_{d\mid n} d$ be the usual sum-of-divisors function. In 1933, Davenport showed that $n/ \sigma (n)$ possesses a continuous distribution function. In other words, the limit $D(u): = \lim _{x\rightarrow \infty }(1/ x){\mathop{\sum }\nolimits}_{n\leq x, n/ \sigma (n)\leq u} 1$ exists for all $u\in [0, 1] $ and varies continuously with $u$. We study the behaviour of the sums ${\mathop{\sum }\nolimits}_{n\leq x, n/ \sigma (n)\leq u} f(n)$ for certain complex-valued multiplicative functions $f$. Our results cover many of the more frequently encountered functions, including $\varphi (n)$, $\tau (n)$ and $\mu (n)$. They also apply to the representation function for sums of two squares, yielding the following analogue of Davenport’s result: for all $u\in [0, 1] $, the limit $$\begin{eqnarray*}\tilde {D} (u): = \lim _{R\rightarrow \infty }\frac{1}{\pi R} \# \biggl\{ (x, y)\in { \mathbb{Z} }^{2} : 0\lt {x}^{2} + {y}^{2} \leq R\text{ and } \frac{{x}^{2} + {y}^{2} }{\sigma ({x}^{2} + {y}^{2} )} \leq u\biggr\}\end{eqnarray*}$$ exists, and $\tilde {D} (u)$ is both continuous and strictly increasing on $[0, 1] $.


1977 ◽  
Vol 20 (4) ◽  
pp. 329-331 ◽  
Author(s):  
R. C. Vaughan

Let n be an integer with n > 1. Jacobsthal (3) defines g(n) to be the least integer so that amongst any g(n) consecutive integers a + 1, a + 2, … a + g(n) there is at least one coprime with n. In other words, ifthenIt is probably true thatwhere ω(n) denotes the number of different prime divisors of n, and Erdos (1) has pointed out that by the small sieve it is possible to show that there is a constant C such that


1968 ◽  
Vol 8 (1) ◽  
pp. 49-55 ◽  
Author(s):  
John Poland

Let G be a finite group of order g having exactly k conjugate classes. Let π(G) denote the set of prime divisors of g. K. A. Hirsch [4] has shown that By the same methods we prove g ≡ k modulo G.C.D. {(p–1)2 p ∈ π(G)} and that if G is a p-group, g = h modulo (p−1)(p2−1). It follows that k has the form (n+r(p−1)) (p2−1)+pe where r and n are integers ≧ 0, p is a prime, e is 0 or 1, and g = p2n+e. This has been established using representation theory by Philip Hall [3] (see also [5]). If then simple examples show (for 6 ∤ g obviously) that g ≡ k modulo σ or even σ/2 is not generally true.


1984 ◽  
Vol 25 (1) ◽  
pp. 127-134 ◽  
Author(s):  
P. Shiu

A positive integer nis called a square-full integer if p2 divides n whenever p is a prime divisor of n. For x > 1 we denote by Q(x) the number of square-full integers not exceeding x. Bateman and Grosswald [1] proved that


1988 ◽  
Vol 40 (3) ◽  
pp. 649-665 ◽  
Author(s):  
G. Frey

(1) The symbols p and q stand for prime numbers and throughout the paper we assume that p is fixed and contained in {3, 5, 7}. Let L be an algebraic number field (i.e., L is a finite extension of Q). Then prime divisors of L dividing p (resp. q) are denoted by (resp. ). The completion of L with respect to is denoted by . Let S be a finite set of prime numbers, and let M/L be a Galois extension with abelian Galois group of exponent p.Definition. M/L is said to be little ramified outside S if for primes q ∉ S and all one haswith k ∊ N and . Here ζp is a pth root of unity, u1, …, uk are elements in and is the normed valuation belonging to . In particular M/L is unramified at all divisors of primes q ∉ S ∪ {p}.


1967 ◽  
Vol 10 (1) ◽  
pp. 65-73 ◽  
Author(s):  
M. V. Subbarao ◽  
A. A. Gioia

Throughout this paper the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n > 1, with L(1) = 0 and w(1) = 1. Also letWe recall that an arithmetic function f(n) is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1, where (m, n) denotes as usual the greatest common divisor of m and n.


Sign in / Sign up

Export Citation Format

Share Document