scholarly journals On the order of magnitude of Jacobsthal's function

1977 ◽  
Vol 20 (4) ◽  
pp. 329-331 ◽  
Author(s):  
R. C. Vaughan

Let n be an integer with n > 1. Jacobsthal (3) defines g(n) to be the least integer so that amongst any g(n) consecutive integers a + 1, a + 2, … a + g(n) there is at least one coprime with n. In other words, ifthenIt is probably true thatwhere ω(n) denotes the number of different prime divisors of n, and Erdos (1) has pointed out that by the small sieve it is possible to show that there is a constant C such that

1985 ◽  
Vol 27 ◽  
pp. 143-159 ◽  
Author(s):  
H. L. Montgomery ◽  
R. C. Vaughan

We define the nth cyclotomic polynomial Φn(z) by the equationand we writewhere ϕ is Euler's function.Erdös and Vaughan [3] have shown thatuniformly in n as m-→∞, whereand that for every large m


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


1966 ◽  
Vol 9 (4) ◽  
pp. 427-431 ◽  
Author(s):  
A. A. Gioia ◽  
M.V. Subbarao

In this note the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n ≥ 1, and L(l) = 0, w(l) = 1. An arithmetic function f is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1. It is known ([1], [3], [4]) that every multiplicative function f satisfies the identity1.1


1990 ◽  
Vol 32 (3) ◽  
pp. 317-327 ◽  
Author(s):  
M. Akbas ◽  
D. Singerman

Let Γ denote the modular group, consisting of the Möbius transformationsAs usual we denote the above transformation by the matrix remembering that V and – V represent the same transformation. If N is a positive integer we let Γ0(N) denote the transformations for which c ≡ 0 mod N. Then Γ0(N) is a subgroup of indexthe product being taken over all prime divisors of N.


2012 ◽  
Vol 29 (3) ◽  
pp. 642-658 ◽  
Author(s):  
Benedikt M. Pötscher

Upper and lower bounds on the order of magnitude of $\sum\nolimits_{t = 1}^n {\lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } } $, where xt is an integrated process, are obtained. Furthermore, upper bounds for the order of magnitude of the related quantity $\sum\nolimits_{t = 1}^n {v_t } \lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } $, where vt are random variables satisfying certain conditions, are also derived.


1989 ◽  
Vol 54 (3-4) ◽  
pp. 225-236 ◽  
Author(s):  
R. Balasubramanian ◽  
T. N. Shorey ◽  
M. Waldschmidt

1983 ◽  
Vol 94 (1) ◽  
pp. 149-166
Author(s):  
H. Burkill ◽  
B. C. Rennie

In (4) a space C of generalized functions was defined which is rather larger than the simple space used to such effect by Lighthill in (3). At the core of C is the space C0 = T of test functions. These are entire (complex) functions f such that all derivatives of f and its Fourier transform F have order of magnitude not exceeding as x → ± ∞, where c is a positive number depending on the individual derivative concerned. If f, g∈ T, the inner product 〈f | g〉 is defined to be


2010 ◽  
Vol 94 (529) ◽  
pp. 42-50
Author(s):  
Juan Pla

A classical exercise in recreational mathematics is to find Pythagorean triples such that the legs are consecutive integers. It is equivalent to solve the Pell equation with k = 2. In this case it provides all the solutions (see [1] for details). But to obtain all the solutions of a Diophantine system in one stroke is rather exceptional. Actually this note will show that the analogous problem of finding four integers A, B, C and D such that


1995 ◽  
Vol 41 (138) ◽  
pp. 232-240 ◽  
Author(s):  
Peter Jansson

AbstractThe subglacial hydrology of the ablation area of Storglaciären, a small valley glacier in northern Sweden, is dramatically affected by a subglacial ridge, or riegel. Water pressures above this riegel are relatively constant, while down-glacier from it they vary significantly. The lower part of the glacier accelerates in response to peaks in basal water pressure. The upper part may be weakly coupled to the lower part during these peaks.A power-law fit of observed basal water pressures and measured surface velocities yieldswhereusis the surface velocity andPEis the effective water pressure (ice overburden pressure minus subglacial water pressure). Data from Findelengletscher, reported by Iken and Bindschadler (1986), yield an identical exponent and a coefficient one order of magnitude larger. The similar exponent implies that the process producing the velocity variations on both glaciers is similar. The variations in velocity are inferred to be due to hydraulic jacking on both glaciers.


Sign in / Sign up

Export Citation Format

Share Document