scholarly journals Families of K-3 Surfaces

1972 ◽  
Vol 48 ◽  
pp. 1-17 ◽  
Author(s):  
Alan L. Mayer

Let V be a 2-dimensional compact complex manifold. V is called a K-3 surface if : a) the irregularity q = dim H1(V, θ) of V vanishes and b) the first Chern class c1 of V vanishes. The canonical sheaf (of holo-morphic 2-forms) K of such a surface is trivial, since q = 0 implies that the Chern class map cx : Pic (V) → H2(V, Z) is injective : thus V has a nowhere zero holomorphic 2-form.

2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


Author(s):  
Alina Marian ◽  
Dragos Oprea ◽  
Rahul Pandharipande

2015 ◽  
Vol 29 (24) ◽  
pp. 1550135
Author(s):  
Paul Bracken

It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.


2015 ◽  
Vol 15 (2) ◽  
Author(s):  
Lucio Bedulli ◽  
Anna Gori

AbstractWe prove that a compact complex manifold endowed with a Kähler-Ricci soliton cannot be isometrically embedded in a complex projective space ℂℙ


Author(s):  
Xiaokui Yang

Let $M$ and $N$ be two compact complex manifolds. We show that if the tautological line bundle ${\mathcal{O}}_{T_{M}^{\ast }}(1)$ is not pseudo-effective and ${\mathcal{O}}_{T_{N}^{\ast }}(1)$ is nef, then there is no non-constant holomorphic map from $M$ to $N$ . In particular, we prove that any holomorphic map from a compact complex manifold $M$ with RC-positive tangent bundle to a compact complex manifold $N$ with nef cotangent bundle must be a constant map. As an application, we obtain that there is no non-constant holomorphic map from a compact Hermitian manifold with positive holomorphic sectional curvature to a Hermitian manifold with non-positive holomorphic bisectional curvature.


Sign in / Sign up

Export Citation Format

Share Document