scholarly journals On singular sets of flat holomorphic mappings with isolated singularities

1978 ◽  
Vol 70 ◽  
pp. 47-80
Author(s):  
Hideo Omoto

In [4] B. Iversen studied critical points of algebraic mappings, using algebraic-geometry methods. In particular when algebraic maps have only isolated singularities, he shows the following relation; Let V and S be compact connected non-singular algebraic varieties of dimcV = n, and dimc S = 1, respectively. Suppose f is an algebraic map of V onto S with isolated singularities. Then it follows thatwhere χ denotes the Euler number, μf(p) is the Milnor number of f at the singular point p, and F is the general fiber of f : V → S.

1952 ◽  
Vol 4 ◽  
pp. 73-78
Author(s):  
Yûsaku Kawahara

In the book “Foundations of algebraic geometry” A. Weil proposed the following problem ; does every differential form of the first kind on a complete variety U determine on every subvariety V of U a differential form of the first kind? This problem was solved affirmatively by S. Koizumi when U is a complete variety without multiple point. In this note we answer this problem in affirmative in the case where V is a simple subvariety of a complete variety U (in §1). When the characteristic is 0 we may extend our result to a more general case but this does not hold for the case characteristic p≠0 (in §2).


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Yongqiang Fu ◽  
Yingying Shan

AbstractIn this paper, we study the problem of removable isolated singularities for elliptic equations with variable exponents. We give a sufficient condition for removability of the isolated singular point for the equations in


A major theme of nineteenth century mathematics was the study of integrals of algebraic functions of one variable. This culminated in Riemann’s introduction of the surfaces that bear his name and analysis of periods of integrals on cycles on the surface. The creation of a correspondingly satisfactory theory for functions of several variables had to wait on the development of algebraic topology and its application by Lefschetz to algebraic varieties. These results were refined by Hodge’s theory of harmonic integrals. A closer analysis of Hodge structures by P. A. Griffiths and P. Deligne in recent years has led to unexpectedly strong restrictions on the topology of the variety and to a diversity of other applications. This advance is closely linked to the study of variation of integrals under deformations, particularly in the neighbourhood of a singular point.


1981 ◽  
Vol 84 ◽  
pp. 209-218
Author(s):  
Yoshihiro Aihara ◽  
Seiki Mori

The famous Picard theorem states that a holomorphic mapping f: C → P1(C) omitting distinct three points must be constant. Borel [1] showed that a non-degenerate holomorphic curve can miss at most n + 1 hyperplanes in Pn(C) in general position, thus extending Picard’s theorem (n = 1). Recently, Fujimoto [3], Green [4] and [5] obtained many Picard type theorems using Borel’s methods for holomorphic mappings.


2001 ◽  
Vol 12 (07) ◽  
pp. 857-865
Author(s):  
DO DUC THAI ◽  
NGUYEN THI TUYET MAI

We give a Hartogs-type extension theorem for separately holomorphic mappings on compact sets into a weakly Brody hyperbolic complex space. Moreover, a generalization of Saint Raymond–Siciak theorem of the singular sets of separately holomorphic mappings with values in a weakly Brody hyperbolic complex space is given.


1994 ◽  
Vol 116 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Thomas Fiedler

AbstractAn unknotting disc is the ‘trace’ in ℝ4 of a homotopy of a diagram of a knot in ℝ3, which shrinks the diagram to a point. In this paper we study unknotting discs which have as singularities only ordinary triple points. It turns out that the Arf invariant of the knot is determined by the number of triple points in which all three branches of the disc intersect pairwise with the same index. We call such a triple point coherent. This interpretation of the Arf invariant has a surprising consequence:Let S ⊂ ℝ4 be a taut immersed sphere which has as singularities only ordinary triple points. Then the number of coherent triple points in S is even. For example, it is easy to show that there is a taut immersed sphere S with Euler number six of the normal bundle and which has exactly three ordinary double points and no other singularities. So, our result implies that the three double points of S can not be pushed together to create an ordinary triple point without the appearance of new singularities.Here ‘taut’ means that the restriction of one of the coordinate functions on S has exactly two (non-degenerate) critical points, i.e. is a perfect Morse function.


2015 ◽  
Vol 26 (04) ◽  
pp. 1540008 ◽  
Author(s):  
Masaru Hasegawa ◽  
Atsufumi Honda ◽  
Kosuke Naokawa ◽  
Kentaro Saji ◽  
Masaaki Umehara ◽  
...  

In this paper, we give two classes of positive semi-definite metrics on 2-manifolds. The one is called a class of Kossowski metrics and the other is called a class of Whitney metrics: The pull-back metrics of wave fronts which admit only cuspidal edges and swallowtails in R3 are Kossowski metrics, and the pull-back metrics of surfaces consisting only of cross cap singularities are Whitney metrics. Since the singular sets of Kossowski metrics are the union of regular curves on the domains of definitions, and Whitney metrics admit only isolated singularities, these two classes of metrics are disjoint. In this paper, we give several characterizations of intrinsic invariants of cuspidal edges and cross caps in these classes of metrics. Moreover, we prove Gauss–Bonnet type formulas for Kossowski metrics and for Whitney metrics on compact 2-manifolds.


Sign in / Sign up

Export Citation Format

Share Document