scholarly journals The Carathéodory–Cartan–Kaup–Wu Theorem on an Infinite-Dimensional Hilbert Space

2007 ◽  
Vol 185 ◽  
pp. 17-30 ◽  
Author(s):  
Joseph A. Cima ◽  
Ian Graham ◽  
Kang Tae Kim ◽  
Steven G. Krantz

AbstractThis paper treats a holomorphic self-mapping f: Ω → Ω of a bounded domain Ω in a separable Hilbert space with a fixed point p. In case the domain is convex, we prove an infinite-dimensional version of the Cartan-Carathéodory-Kaup-Wu Theorem. This is basically a rigidity result in the vein of the uniqueness part of the classical Schwarz lemma. The main technique, inspired by an old idea of H. Cartan, is iteration of the mapping f and its derivative. A normality result for holomorphic mappings in the compact-weak-open topology, due to Kim and Krantz, is used.

2019 ◽  
Vol 62 (4) ◽  
pp. 913-924
Author(s):  
H. Carrión ◽  
P. Galindo ◽  
M. L. Lourenço

AbstractWe present an infinite-dimensional version of Cartan's theorem concerning the existence of a holomorphic inverse of a given holomorphic self-map of a bounded convex open subset of a dual Banach space. No separability is assumed, contrary to previous analogous results. The main assumption is that the derivative operator is power bounded, and which we, in turn, show to be diagonalizable in some cases, like the separable Hilbert space.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
V.M. Busovikov ◽  
V.Zh. Sakbaev

AbstractWe study the class of finite additive shift invariant measures on the real separable Hilbert space E. For any choice of such a measure we consider the Hilbert space ℋ of complex-valued functions which are square-integrable with respect to this measure. Some analogs of Sobolev spaces of functions on the space E are introduced. The analogue of Gauss theorem is obtained for the simplest domains such as the rectangle in the space E. The correctness of the problem for Poisson equation in the rectangle with homogeneous Dirichlet condition is obtained and the variational approach of the solving of this problem is constructed.


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


2004 ◽  
Vol 2 (1) ◽  
pp. 71-95 ◽  
Author(s):  
George Isac ◽  
Monica G. Cojocaru

In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.


2009 ◽  
Vol 80 (1) ◽  
pp. 83-90 ◽  
Author(s):  
SHUDONG LIU ◽  
XIAOCHUN FANG

AbstractIn this paper, we construct the unique (up to isomorphism) extension algebra, denoted by E∞, of the Cuntz algebra 𝒪∞ by the C*-algebra of compact operators on a separable infinite-dimensional Hilbert space. We prove that two unital monomorphisms from E∞ to a unital purely infinite simple C*-algebra are approximately unitarily equivalent if and only if they induce the same homomorphisms in K-theory.


2005 ◽  
Vol 79 (3) ◽  
pp. 391-398
Author(s):  
Kazunori Kodaka

AbstractLet A be a C*-algebra and K the C*-algebra of all compact operators on a countably infinite dimensional Hilbert space. In this note, we shall show that there is an isomorphism of a semigroup of equivalence classes of certain partial automorphisms of A ⊗ K onto a semigroup of equivalence classes of certain countably generated A-A-Hilbert bimodules.


1989 ◽  
Vol 41 (6) ◽  
pp. 1021-1089 ◽  
Author(s):  
N. Christopher Phillips

In topology, the representable K-theory of a topological space X is defined by the formulas RK0(X) = [X,Z x BU] and RKl(X) = [X, U], where square brackets denote sets of homotopy classes of continuous maps, is the infinite unitary group, and BU is a classifying space for U. (Note that ZxBU is homotopy equivalent to the space of Fredholm operators on a separable infinite-dimensional Hilbert space.) These sets of homotopy classes are made into abelian groups by using the H-group structures on Z x BU and U. In this paper, we give analogous formulas for the representable K-theory for α-C*-algebras defined in [20].


1966 ◽  
Vol 18 ◽  
pp. 897-900 ◽  
Author(s):  
Peter A. Fillmore

In (2) Halmos and Kakutani proved that any unitary operator on an infinite-dimensional Hilbert space is a product of at most four symmetries (self-adjoint unitaries). It is the purpose of this paper to show that if the unitary is an element of a properly infinite von Neumann algebraA(i.e., one with no finite non-zero central projections), then the symmetries may be chosen fromA.A principal tool used in establishing this result is Theorem 1, which was proved by Murray and von Neumann (6, 3.2.3) for type II1factors; see also (3, Lemma 5). The author would like to thank David Topping for raising the question, and for several stimulating conversations on the subject. He is also indebted to the referee for several helpful suggestions.


1989 ◽  
Vol 32 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Domingo A. Herrero

AbstractA bounded linear operator A on a complex, separable, infinite dimensional Hilbert space is called finite if for each . It is shown that the class of all finite operators is a closed nowhere dense subset of


Sign in / Sign up

Export Citation Format

Share Document