Antibodies to synthetic peptides based on band 3 motifs react specifically with Plasmodium falciparum (humanmalaria)-infected erythrocytes and block cytoadherence

Parasitology ◽  
1994 ◽  
Vol 108 (4) ◽  
pp. 389-396 ◽  
Author(s):  
I. Crandall ◽  
I. W. Sherman

SUMMARYRabbit polyclonal and mouse monoclonal antibodies (Mabs) prepared against synthetic peptides patterned on exofacialloops 3 (amino acids 546–555) and 7 (821–834) of the human anion transport protein band 3 inhibited the cytoadherence of Plasmodium falciparum-infected erythrocytes to C32 amelanotic melanoma cells. Mabs directed against exofacial loop4 (amino acids 628–642) did not inhibit adherence to a significant degree. The murine Mabs recognized only P. falciparum- infected erythrocytes suggesting that the epitopes of loops 3, 4 and 7 are normally cryptic in uninfected erythrocytes.

Parasitology ◽  
1998 ◽  
Vol 117 (6) ◽  
pp. 533-540 ◽  
Author(s):  
S. EDA ◽  
I. W. SHERMAN

Binding of Plasmodium falciparum-infected erythrocytes (PE) to endothelial cells is mediated by the erythrocyte-membrane protein, band 3-related adhesin. To determine its role, the binding of infected cells treated with various chemical modifiers was investigated. Binding was inhibited by a lysine modifier (4,4′-diisothiocyanostilbene-2,2′-di-sulfonate (DIDS)) known to specifically bind to band 3, another lysine modifier (trinitrobenzene sulfonic acid), a tyrosine modifier (sodium iodide in conjunction with lactoperoxidase, hydrogen peroxide) and oxidants (diamide, sodium periodate and ADP-chelated ferric ion), but binding was unaffected by the histidine modifier (diethylpyrocarbonate) and the arginine modifier (phenyl glyoxyl monohydrate). To artificially expose the band 3-related adhesin, uninfected erythrocytes were treated with acridine orange or loaded with calcium. These cells bound to C32 amelanotic melanoma cells, were immunostained with a monoclonal antibody that specifically binds to the band 3-related adhesin on PE, and the binding was inhibited by this monoclonal antibody. The binding of acridine orange-treated and calcium-loaded uninfected erythrocytes, could also be blocked by DIDS. In the case of acridine orange-treated erythrocytes, the patterns of the effects of the chemical modification on binding were consistent with that of PE except for tyrosine modification. These results demonstrate that the band 3-related adhesin, even in the absence of parasite-encoded proteins, contributes to PE adhesion.


Parasitology ◽  
1994 ◽  
Vol 108 (3) ◽  
pp. 257-267 ◽  
Author(s):  
I. Crandall ◽  
I. W. Sherman

SUMMARYMurine monoclonal antibodies (Mabs) were produced by vaccination of Balb/c mice with live Plasmodium falciparum infected red cells (iRBC). The iRBC Mabs recognized altered forms of the human erythrocyte membrane protein band 3; however, these Mabs did not recognize the band 3 molecule in uninfected or ring-infected red cells. The location of epitopes was determined by studying the binding of the iRBC Mabs after selective proteolysis of band 3 as well as by the reactivity of these Mabs to synthetic peptides that corresponded to putative exofacial regions of band 3. Treatment of uninfected red cell membranes with trypsin under low ionic strength conditions resulted in exposure of cryptic epitopes of band 3 which were recognized by the iRBC Mabs. Several of the anti-iRBC Mabs (two of which were described previously) inhibited the in vitro adherence of infected erythrocytes to C32 amelanotic melanoma cells. A mouse polyclonal serum against a synthetic peptide based on an amino acid sequence motif of band 3 reacted (by immunostaining) only with the surface of iRBC and blocked adhesion. Thus, it appears that cryptic residues of the band 3 protein become exposed upon parasitization, and their presence contributes to the increased adhesiveness of the P. falciparum-infected red cell.


Parasitology ◽  
1996 ◽  
Vol 112 (3) ◽  
pp. 261-267 ◽  
Author(s):  
I. Crandall ◽  
I. W. Sherman

SUMMARYEpitope mapping of a murine monoclonal antibody (mAb), 5H12, prepared against livePlasmodium falciparum-intected red blood cells indicated that the epitope consisted of amino acid residues 474–487 of the human anion transport protein, band 3. mAb 5H12 enhanced cytoadherence, but inhibited the CD36-like mediated resetting. A synthetic peptide based on the sequence of the epitope (FSFCETNGLE) blocked both resetting and cytoadherence, suggesting that this amino acid sequence may form the CD36-like receptor. The CD36-like region of band 3 was antigenically distinct from platelet or endothelial CD36.


2013 ◽  
Vol 12 (9) ◽  
pp. 1179-1191 ◽  
Author(s):  
Sebastian Fernandez-Pol ◽  
Zdenek Slouka ◽  
Souvik Bhattacharjee ◽  
Yana Fedotova ◽  
Stefan Freed ◽  
...  

ABSTRACT Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella -like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro , PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.


Parasitology ◽  
1991 ◽  
Vol 102 (3) ◽  
pp. 335-340 ◽  
Author(s):  
I. Crandall ◽  
I. W. Sherman

A monoclonal antibody, 1C4, was produced which recognizes a 65 kDa protein that is localized to the plasma membrane of human erythrocytes infected with Plasmodium falciparum. By immunofluorescence the antigen was visualized as dots on the surface of the infected cell. The 65 kDa protein was present in 4 strains of diverse geographical origin, and in erythrocytes infected with a knobless strain. The 65 kDa protein was insoluble in non-ionic detergents, but was partly soluble in SDS and some high (1 M) śalt solutions. The 65 kDa protein is recognized by antibodies specific for the cytoplasmic domain and the N-terminal side of the membrane-spanning region of human band 3, but was not recognized by an antibody specific to the C-terminal side of the membrane-spanning region. The results of treatment of the 65 kDa protein with trypsin and chymotrypsin are consistent with the 65 kDa protein being a truncated and covalently modified band 3 molecule which consists of the first 540 amino acids of human band 3.


1983 ◽  
Vol 81 (4) ◽  
pp. 453-484 ◽  
Author(s):  
P J Bjerrum ◽  
J O Wieth ◽  
C L Borders

The red cell anion transport protein, band 3, can be selectively modified with phenylglyoxal, which modifies arginyl residues (arg) in proteins, usually with a phenylglyoxal: arg stoichiometry of 2:1. Indiscriminate modification of all arg in red cell membrane proteins occurred rapidly when both extra- and intracellular pH were above 10. Selective modification of extracellularly exposed arg was achieved when ghosts with a neutral or acid intracellular pH were treated with phenylglyoxal in an alkaline medium. The rate and specificity of modification depend on the extracellular chloride concentration. At 165 mM chloride maximum transport inactivation was accompanied by the binding of four phenylglyoxals per band 3 molecule. After removal of extracellular chloride, maximum transport inhibition was accompanied by the incorporation of two phenylglyoxals per band 3, which suggests that transport function is inactivated by the modification of a single arg. After cleavage of band 3 with extracellular chymotrypsin, [14C]phenylglyoxal was located almost exclusively in a 35,000-dalton peptide. In contrast, the primary covalent binding site of the isothiocyanostilbenedisulfonates is a lysyl residue in the second cleavage product, a 65,000-dalton fragment. This finding supports the view that the transport region of band 3 is composed of strands from both chymotryptic fragments. The binding of phenylglyoxal and the stilbene inhibitors interfered with each other. The rate of phenylglyoxal binding was reduced by a reversibly binding stilbenedisulfonate (DNDS), and covalent binding of [3H]DIDS to phenylglyoxal-modified membranes was strongly delayed. At DIDS concentrations below 10 10 micrometers, only 50% of the band 3 molecules were labeled with [3H]-DIDS during 90 min at 38 degrees C, thereby demonstrating an interaction between binding of the two inhibitors to the protomers of the oligomeric band 3 molecules.


Sign in / Sign up

Export Citation Format

Share Document