scholarly journals Definition of a physiologic aging autoantigen by using synthetic peptides of membrane protein band 3: localization of the active antigenic sites.

1990 ◽  
Vol 87 (15) ◽  
pp. 5734-5738 ◽  
Author(s):  
M. M. Kay ◽  
J. J. Marchalonis ◽  
J. Hughes ◽  
K. Watanabe ◽  
S. F. Schluter
1991 ◽  
Vol 278 (1) ◽  
pp. 57-62 ◽  
Author(s):  
R Kannan ◽  
J Yuan ◽  
P S Low

In previous studies we have described a process whereby an erythrocyte in biochemical distress can initiate its own removal by macrophages of the reticuloendothelial system. This process involves the clustering of the integral membrane protein band 3 by denatured haemoglobin and the subsequent recognition of the exofacial poles of clustered band 3 and associated proteins by autologous antibodies. To determine whether this clearance pathway might mediate normal cell turnover, the fraction of normal erythrocytes containing the 0.5% densest cells, which are known to be destined for immediate removal, was isolated and characterized biochemically. This densest fraction was found to contain 6 times more membrane-bound globin (haemichromes) and 10 times more surface-bound autologous IgG than the other fractions containing cells of lower density. To determine whether the autologous IgG was physically associated with the haemichrome-stabilized membrane protein clusters, a procedure was developed for isolation and characterization of the microscopic aggregates. The isolated aggregates were found to contain a disulphide-cross-linked mixture of several membrane proteins, predominantly haemichromes, spectrin and band 3. Although the aggregates constituted only 0.09% of the total membrane protein, they still contained approximately 55% of the total cell-surface IgG. Since in control studies anti-(blood group A) antibodies, which are distributed randomly over the surface of type A cells, could not be recovered in the aggregate, we conclude that the autologous cell-surface IgGs were physically associated with the membrane protein clusters when they were co-isolated with them in our procedure. Thus the 640-fold enrichment of autologous IgG in the aggregates compared with regions of the membrane devoid of tightly clustered protein suggests that sites of integral protein clustering either are non-specifically sticky to IgG or are viewed as foreign or ‘non-self’ by the immune system and aggressively opsonized with IgG.


1991 ◽  
Vol 88 (7) ◽  
pp. 2778-2782 ◽  
Author(s):  
M. M. Kay ◽  
J. Hughes ◽  
I. Zagon ◽  
F. B. Lin

Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3900-3906 ◽  
Author(s):  
M. Estela Campanella ◽  
Haiyan Chu ◽  
Nancy J. Wandersee ◽  
Luanne L. Peters ◽  
Narla Mohandas ◽  
...  

Previous research has shown that glycolytic enzymes (GEs) exist as multienzyme complexes on the inner surface of human erythrocyte membranes. Because GE binding sites have been mapped to sequences on the membrane protein, band 3, that are not conserved in other mammalian homologs, the question arose whether GEs can organize into complexes on other mammalian erythrocyte membranes. To address this, murine erythrocytes were stained with antibodies to glyceraldehyde-3-phosphate dehydrogenase, aldolase, phosphofructokinase, lactate dehydrogenase, and pyruvate kinase and analyzed by confocal microscopy. GEs were found to localize to the membrane in oxygenated erythrocytes but redistributed to the cytoplasm upon deoxygenation, as seen in human erythrocytes. To identify membrane proteins involved in GE assembly, erythrocytes from mice lacking each of the major erythrocyte membrane proteins were examined for GE localization. GEs from band 3 knockout mice were not membrane associated but distributed throughout the cytoplasm, regardless of erythrocyte oxygenation state. In contrast, erythrocytes from mice lacking α-spectrin, ankyrin, protein 4.2, protein 4.1, β-adducin, or dematin headpiece exhibited GEs bound to the membrane. These data suggest that oxygenation-dependent assembly of GEs on the membrane could be a general phenomenon of mammalian erythrocytes and that stability of these interactions depends primarily on band 3.


1989 ◽  
Vol 264 (27) ◽  
pp. 15893-15899 ◽  
Author(s):  
B M Willardson ◽  
B J M Thevenin ◽  
M L Harrison ◽  
W M Kuster ◽  
M D Benson ◽  
...  

1989 ◽  
Vol 86 (15) ◽  
pp. 5834-5838 ◽  
Author(s):  
M. M. Kay ◽  
N. Flowers ◽  
J. Goodman ◽  
G. Bosman

Parasitology ◽  
1994 ◽  
Vol 108 (4) ◽  
pp. 389-396 ◽  
Author(s):  
I. Crandall ◽  
I. W. Sherman

SUMMARYRabbit polyclonal and mouse monoclonal antibodies (Mabs) prepared against synthetic peptides patterned on exofacialloops 3 (amino acids 546–555) and 7 (821–834) of the human anion transport protein band 3 inhibited the cytoadherence of Plasmodium falciparum-infected erythrocytes to C32 amelanotic melanoma cells. Mabs directed against exofacial loop4 (amino acids 628–642) did not inhibit adherence to a significant degree. The murine Mabs recognized only P. falciparum- infected erythrocytes suggesting that the epitopes of loops 3, 4 and 7 are normally cryptic in uninfected erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document