Airborne radio echo sounding of glaciers in Svalbard

Polar Record ◽  
1980 ◽  
Vol 20 (126) ◽  
pp. 261-266 ◽  
Author(s):  
D. J. Drewry ◽  
O. Liestøl ◽  
C. S. Neal ◽  
O. Orheim ◽  
B. Wold

During April–May 1980 the Scott Polar Research Institute (SPRI) and Norsk Polarinstitutt (NPI) conducted a joint programme of radio echo sounding (RES) in Svalbard. The principal aims were to evaluate the performance of SPRI 60 MHz echo sounding equipment of Svalbard glaciers, to measure ice thickness over a wide range of conditions, and to investigate specific glaciers which are the focus of current glaciological studies.

Polar Record ◽  
1985 ◽  
Vol 22 (139) ◽  
pp. 359-378 ◽  
Author(s):  
D. J. Drewry ◽  
O. Liestøl

AbstractDuring spring 1983 a joint British-Norwegian expedition from the Scott Polar Research Institute (SPRI) and the Norsk Polarinstitutt (NP) undertook a programme of glaciological research in the Svalbard archipelago. Work focussed on obtaining airborne radio echo sounding measurements using a newly-constructed digital system and some reconnaissance observations (temperatures, net mass budgets and ice velocities) on the ice caps of Nordaustlandet for the investigation of their surging behaviour. Valley glaciers in Spitsbergen and the ice cap on Kvitøya were also sounded from the air.


1982 ◽  
Vol 3 ◽  
pp. 355-355 ◽  
Author(s):  
Olav Orheim

The Norwegian Antarctic Research Expedition 1978–79 used the Scott Polar Research Institute Mk IV radio echo-sounding system fitted in a Bell 206B helicopter to survey 620 km of Riiser-Larsenisen and 100 km across the outer part of Stancomb-Wills Ice Stream. Observed thicknesses of Riiser-Larsenisen decrease from 700 m at the grounding line to less than 200 m at the ice front. The thickness of Bllenga ice rise varied between 200 and 450 m. The ice shelf thins towards the east, and seems there to flow obliquely to the ice front (Fig.1).Step-like change in thickness of >150 m over 500 m horizontal distance i s observed in the central part of the ice shelf. The records also demonstrate undulations in ice thickness of 600 to 700 m wavelength and 50 m amplitude, and various types of rifts and crevasses. Internal layering is recorded at 250 to 300 m depth over Blåenga and i n the ice shelf up-stream of this ice rise.Observed ice thicknesses on Stancomb-Wills Ice Stream range from 130 to 220 m, with no systematic decrease towards the ice front. The records include long sections of heavy scatter from densely spaced rifts and bottom crevasses. This ice stream attains velocities > 4 km a−1, and is much more active than Riiser-Larsenisen. This high activity has resulted in extensive fracturing of the ice shelf.


1982 ◽  
Vol 3 ◽  
pp. 355 ◽  
Author(s):  
Olav Orheim

The Norwegian Antarctic Research Expedition 1978–79 used the Scott Polar Research Institute Mk IV radio echo-sounding system fitted in a Bell 206B helicopter to survey 620 km of Riiser-Larsenisen and 100 km across the outer part of Stancomb-Wills Ice Stream. Observed thicknesses of Riiser-Larsenisen decrease from 700 m at the grounding line to less than 200 m at the ice front. The thickness of Bllenga ice rise varied between 200 and 450 m. The ice shelf thins towards the east, and seems there to flow obliquely to the ice front (Fig.1). Step-like change in thickness of >150 m over 500 m horizontal distance i s observed in the central part of the ice shelf. The records also demonstrate undulations in ice thickness of 600 to 700 m wavelength and 50 m amplitude, and various types of rifts and crevasses. Internal layering is recorded at 250 to 300 m depth over Blåenga and i n the ice shelf up-stream of this ice rise. Observed ice thicknesses on Stancomb-Wills Ice Stream range from 130 to 220 m, with no systematic decrease towards the ice front. The records include long sections of heavy scatter from densely spaced rifts and bottom crevasses. This ice stream attains velocities > 4 km a−1, and is much more active than Riiser-Larsenisen. This high activity has resulted in extensive fracturing of the ice shelf.


1975 ◽  
Vol 15 (73) ◽  
pp. 137-150 ◽  
Author(s):  
David J. Drewry

AbstractThe errors involved in ice thickness determinations in Antarctica by seismic reflection shooting, gravity observations and radio-echo sounding are briefly discussed. Relative accuracies of 3%, 7-10% and 1.5% have been suggested. Double checks of ice depths from radar sounding in east Antarctica indicate an internal consistency of measurement for this technique of <1%. Comparison of carefully executed seismic shooting and routine radio-echo sounding results against absolute ice thickness values from two deep core drilling sites show no significant differences between these two remote methods (i.e. both are better than 1.5%).Over 60 comparisons are examined between radar ice thicknesses and over-snow measurements obtained on eight independent traverses in east Antarctica. Three traverses exhibit consistently unacceptable results-U.S. Victoria Land Traverse II (southern leg), Commonwealth Transanlarctic Expedition and the U.S.S.R. Vostok to South Pole Traverse—which probably result from misinterpretation of “noisy” seismograms. The remaining comparisons indicate mean differences, including some navigational uncertainty, of ≈3%, <8% and 5% between radio-echo and (1) seismic, (2) gravity, and (3) gravity tied to seismic determinations, respectively.


1986 ◽  
Vol 8 ◽  
pp. 156-158 ◽  
Author(s):  
Arne Chr. Saetrang ◽  
Bjørn Wold

The paper describes instrumentation, navigation methods, and interpretation problems from radio echo-sounding on parts of Jostedalsbreen. A map of the subglacial topography is presented. Ice thickness ranges from 60 m to 600 m with most sections between 150 m and 300 m.


1999 ◽  
Vol 29 ◽  
pp. 267-272 ◽  
Author(s):  
D. Steinhage ◽  
U. Nixdorf ◽  
U. Meyer ◽  
H. Miller

AbstractSince the austral summer of 1994-95 the Alfred Wegener Institute has carried out airborne radio-echo sounding (RES) measurements in Antarctica with its newly designed RES system. Since 1995-96 an ongoing pre-site survey for an ice-coring drill site in Dronning Maud Land has been carried out as part of the European Project for Ice Goring in Antarctica. The survey covers an area of 948 000 km2, with >49 500 km of airborne RES obtained from >200 hours of flight operation flown during the period 1994-97. In this paper, first results of the airborne RES survey are graphically summarized as newly derived maps of the ice thickness and subglacial topography, as well as a three-dimensional view of surface and subglacial bed and outcrop topography, revealing a total ice volume of 1.48 x 106 km3.


1986 ◽  
Vol 8 ◽  
pp. 156-158 ◽  
Author(s):  
Arne Chr. Saetrang ◽  
Bjørn Wold

The paper describes instrumentation, navigation methods, and interpretation problems from radio echo-sounding on parts of Jostedalsbreen. A map of the subglacial topography is presented. Ice thickness ranges from 60 m to 600 m with most sections between 150 m and 300 m.


1987 ◽  
Vol 9 ◽  
pp. 160-165
Author(s):  
S. Mae ◽  
M. Yoshida

Airborne radio echo-sounding was carried out in order to measure the thickness of the ice sheet in the Shirase Glacier drainage basin and map the bedrock topography. It was found that the elevation of bedrock was approximately at sea-level from Shirase Glacier to 100 km up-stream of the glacier and thereafter it was 500–100 m higher. Investigation of the echo intensity reflected from the bedrock indicates that at ice thicknesses less than 1000 m absorption was about 5.2 dB/100 m, but at greater ice thicknesses echo intensity did not depend upon the ice thickness but became approximately constant. Where ice thicknesses were greater than 1000 m in the main flow area of the Shirase Glacier drainage basin, the reflection strengths of about 9 dB were greater than outside the basin. Since the increase in echo intensity was considered to be due to the existence of water, the strong echo observed in the main part of the basin supported an hypothesis that the base of the basin was wet and the ice sheet was sliding on the bedrock.


1987 ◽  
Vol 9 ◽  
pp. 35-38 ◽  
Author(s):  
Heinz Blatter

A total of 400 soundings along 15 profiles were obtained on White Glacier, Axel Heiberg Island, N.W.T. with a monopulse radar equipment that was rebuilt according to a model of the US Geological Survey. The resulting data allowed maps to be compiled of the ice thickness for the glacier tongue, The radio echo-sounding data and englacial temperature measurements give some indication of the existence of stagnant ice in depressions of the glacier bed in the accumulation zone of White Glacier.


Sign in / Sign up

Export Citation Format

Share Document