scholarly journals Expanding the proteome: disordered and alternatively folded proteins

2011 ◽  
Vol 44 (4) ◽  
pp. 467-518 ◽  
Author(s):  
H. Jane Dyson

AbstractProteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question ‘why would a particular domain need to be unstructured?’ are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder–order continuum.

Author(s):  
Lasse Staby ◽  
Katherine R. Kemplen ◽  
Amelie Stein ◽  
Michael Ploug ◽  
Jane Clarke ◽  
...  

Abstract Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order–disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


2018 ◽  
Vol 19 (11) ◽  
pp. 3315 ◽  
Author(s):  
Rita Pancsa ◽  
Fruzsina Zsolyomi ◽  
Peter Tompa

Although improved strategies for the detection and analysis of evolutionary couplings (ECs) between protein residues already enable the prediction of protein structures and interactions, they are mostly restricted to conserved and well-folded proteins. Whereas intrinsically disordered proteins (IDPs) are central to cellular interaction networks, due to the lack of strict structural constraints, they undergo faster evolutionary changes than folded domains. This makes the reliable identification and alignment of IDP homologs difficult, which led to IDPs being omitted in most large-scale residue co-variation analyses. By preforming a dedicated analysis of phylogenetically widespread bacterial IDP–partner interactions, here we demonstrate that partner binding imposes constraints on IDP sequences that manifest in detectable interprotein ECs. These ECs were not detected for interactions mediated by short motifs, rather for those with larger IDP–partner interfaces. Most identified coupled residue pairs reside close (<10 Å) to each other on the interface, with a third of them forming multiple direct atomic contacts. EC-carrying interfaces of IDPs are enriched in negatively charged residues, and the EC residues of both IDPs and partners preferentially reside in helices. Our analysis brings hope that IDP–partner interactions difficult to study could soon be successfully dissected through residue co-variation analysis.


2012 ◽  
Vol 40 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Nathalie Sibille ◽  
Pau Bernadó

In recent years, IDPs (intrinsically disordered proteins) have emerged as pivotal actors in biology. Despite IDPs being present in all kingdoms of life, they are more abundant in eukaryotes where they are involved in the vast majority of regulation and signalling processes. The realization that, in some cases, functional states of proteins were partly or fully disordered was in contradiction to the traditional view where a well defined three-dimensional structure was required for activity. Several experimental evidences indicate, however, that structural features in IDPs such as transient secondary-structural elements and overall dimensions are crucial to their function. NMR has been the main tool to study IDP structure by probing conformational preferences at residue level. Additionally, SAXS (small-angle X-ray scattering) has the capacity to report on the three-dimensional space sampled by disordered states and therefore complements the local information provided by NMR. The present review describes how the synergy between NMR and SAXS can be exploited to obtain more detailed structural and dynamic models of IDPs in solution. These combined strategies, embedded into computational approaches, promise the elucidation of the structure–function properties of this important, but elusive, family of biomolecules.


2018 ◽  
Vol 19 (11) ◽  
pp. 3614 ◽  
Author(s):  
Do-Hyoung Kim ◽  
Kyou-Hoon Han

Intrinsically disordered proteins (IDPs) are unorthodox proteins that do not form three-dimensional structures under non-denaturing conditions, but perform important biological functions. In addition, IDPs are associated with many critical diseases including cancers, neurodegenerative diseases, and viral diseases. Due to the generic name of “unstructured” proteins used for IDPs in the early days, the notion that IDPs would be completely unstructured down to the level of secondary structures has prevailed for a long time. During the last two decades, ample evidence has been accumulated showing that IDPs in their target-free state are pre-populated with transient secondary structures critical for target binding. Nevertheless, such a message did not seem to have reached with sufficient clarity to the IDP or protein science community largely because similar but different expressions were used to denote the fundamentally same phenomenon of presence of such transient secondary structures, which is not surprising for a quickly evolving field. Here, we summarize the critical roles that these transient secondary structures play for diverse functions of IDPs by describing how various expressions referring to transient secondary structures have been used in different contexts.


2019 ◽  
Vol 17 (01) ◽  
pp. 1950004 ◽  
Author(s):  
Chun Fang ◽  
Yoshitaka Moriwaki ◽  
Aikui Tian ◽  
Caihong Li ◽  
Kentaro Shimizu

Molecular recognition features (MoRFs) are key functional regions of intrinsically disordered proteins (IDPs), which play important roles in the molecular interaction network of cells and are implicated in many serious human diseases. Identifying MoRFs is essential for both functional studies of IDPs and drug design. This study adopts the cutting-edge machine learning method of artificial intelligence to develop a powerful model for improving MoRFs prediction. We proposed a method, named as en_DCNNMoRF (ensemble deep convolutional neural network-based MoRF predictor). It combines the outcomes of two independent deep convolutional neural network (DCNN) classifiers that take advantage of different features. The first, DCNNMoRF1, employs position-specific scoring matrix (PSSM) and 22 types of amino acid-related factors to describe protein sequences. The second, DCNNMoRF2, employs PSSM and 13 types of amino acid indexes to describe protein sequences. For both single classifiers, DCNN with a novel two-dimensional attention mechanism was adopted, and an average strategy was added to further process the output probabilities of each DCNN model. Finally, en_DCNNMoRF combined the two models by averaging their final scores. When compared with other well-known tools applied to the same datasets, the accuracy of the novel proposed method was comparable with that of state-of-the-art methods. The related web server can be accessed freely via http://vivace.bi.a.u-tokyo.ac.jp:8008/fang/en_MoRFs.php .


Biomolecules ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Xingcheng Lin ◽  
Prakash Kulkarni ◽  
Federico Bocci ◽  
Nicholas Schafer ◽  
Susmita Roy ◽  
...  

Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.


2018 ◽  
Author(s):  
Rashmi Rameshwari ◽  
Shilpa S Chapadgaonkar ◽  
T. V. Prasad

AbstractA methodological framework of graph traversal in Systems Biology is presented here. At present there is need to investigate system rather individual component. The proposed analysis generalizes the various idea of network representations of protein interactions. This approach highlights various methods used in construction of protein interaction graph or network using suitable algorithm. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the importance of each protein for its interactions. Furthermore, the determination of the pattern of edge between residues yields insights into the function prediction of an interaction. This is of special interest to investigate intrinsically disordered proteins, since it is difficult to determine structural (three-dimensional) architecture of each proteins in protein interactions network. In present work various approaches for protein interactions network construction, models and methods along with graph theories has been discussed which can be used to reveal hidden properties and features of a network. Further effective algorithm for visualization of protein interactions is suggested. As construction of Biological network is dependent on various properties of graph. A holistic approach such as Systems Biology approach can better solve the problem. This network profiling combined with knowledge extraction will help biologist to explore hidden information in genome as well as in proteome..


2016 ◽  
Author(s):  
Michael Vincent ◽  
Santiago Schnell

AbstractIntrinsically disordered proteins lack a stable three-dimensional structure under physiological conditions. While this property has gained considerable interest within the past two decades, disorder poses substantial challenges to experimental characterization efforts. In effect, numerous computational tools have been developed to predict disorder from primary sequences, however, interpreting the output of these algorithms remains a challenge. To begin to bridge this gap, we present Disorder Atlas, web-based software that facilitates the interpretation of intrinsic disorder predictions using proteome-based descriptive statistics. This service is also equipped to facilitate large-scale systematic exploratory searches for proteins encompassing disorder features of interest, and further allows users to browse the prevalence of multiple disorder features at the proteome level. As a result, Disorder Atlas provides a user-friendly tool that places algorithm-generated disorder predictions in the context of the proteome, thereby providing an instrument to compare the results of a query protein against predictions made for an entire population. Disorder Atlas currently supports ten eukaryotic proteomes and is freely available for non-commercial users at http://www.disorderatlas.org.


Sign in / Sign up

Export Citation Format

Share Document