stability dynamics
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Taoufik QORIA ◽  
Ahmed Meligy ◽  
Ilknur Colak

Under grid distortions, Modular Multilevel Converters (MMC) must adopt proper control strategies to fulfill the power system requirements and ensure a stable operation. An inappropriate control under such conditions may lead to energy unbalances between the MMC legs, inaccurate current injection, and failure in the synchronization process. In this context, sequence extraction methods play a critical role in enhancing the performance of the control, firstly, by aiding the Phase-Locked Loop (PLL) to maintain the synchronization with the AC grid by following the positive sequence fundamental component of the voltage, secondly, by allowing an accurate active and reactive currents injection via the decoupled Voltage Oriented Control (dVOC), thirdly, by properly managing the internal energy of the MMC through the circulating current control. In prior researches, some sequence extraction methods have been used for MMC STATCOM. However, the sequence extraction was not the core of the performed studies and their impact on the system behavior has not been highlighted or tested in several grid conditions. This work fills this gap by first assessing the performance of a Single Delta Bridge Cell MMC (SDBC-MMC) STATCOM with four well-known sequence extraction methods (i.e., Decoupled Double Synchronous Reference Frame (DDSRF), Dual Second Order Generalized Integrator (DSOGI), Improved DSOGI, and Fortescue matrix-based (FMB) filter) under normal and abnormal grid conditions, then, finding the most suitable one in terms of stability, dynamics, and functionalities.


2021 ◽  
Author(s):  
Taoufik QORIA ◽  
Ahmed Meligy ◽  
Ilknur Colak

Under grid distortions, Modular Multilevel Converters (MMC) must adopt proper control strategies to fulfill the power system requirements and ensure a stable operation. An inappropriate control under such conditions may lead to energy unbalances between the MMC legs, inaccurate current injection, and failure in the synchronization process. In this context, sequence extraction methods play a critical role in enhancing the performance of the control, firstly, by aiding the Phase-Locked Loop (PLL) to maintain the synchronization with the AC grid by following the positive sequence fundamental component of the voltage, secondly, by allowing an accurate active and reactive currents injection via the decoupled Voltage Oriented Control (dVOC), thirdly, by properly managing the internal energy of the MMC through the circulating current control. In prior researches, some sequence extraction methods have been used for MMC STATCOM. However, the sequence extraction was not the core of the performed studies and their impact on the system behavior has not been highlighted or tested in several grid conditions. This work fills this gap by first assessing the performance of a Single Delta Bridge Cell MMC (SDBC-MMC) STATCOM with four well-known sequence extraction methods (i.e., Decoupled Double Synchronous Reference Frame (DDSRF), Dual Second Order Generalized Integrator (DSOGI), Improved DSOGI, and Fortescue matrix-based (FMB) filter) under normal and abnormal grid conditions, then, finding the most suitable one in terms of stability, dynamics, and functionalities.


Author(s):  
Lucía D. Espeche ◽  
Karl Ellioth Sewell ◽  
Ignacio H. Castro ◽  
Luciana Capece ◽  
María Florencia Pignataro ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 153
Author(s):  
Joko Harianto ◽  
Titik Suparwati ◽  
Alfonsina Lisda Puspa Dewi

This article describes the dynamics of local stability equilibrium point models of interaction between prey populations and their predators. The model involves response functions in the form of Holling type III and anti-predator behavior. The existence and stability of the equilibrium point of the model can be obtained by reviewing several cases. One of the factors that affect the existence and local stability of the model equilibrium point is the carrying capacity (k) parameter. If x3∗, y3∗  > 0 is a constant solution of the model and ∈ (0,x3∗), then there is a unique boundary equilibrium point Ek (k , 0). Whereas, if k ∈ (x4∗, y4∗], then Ek (k, 0) is unstable and E3 (x3∗, y3∗) is stable. Furthermore, if k ∈ ( x4∗, ∞), then Ek ( k, 0) remains stable and E4 (x4∗, y4∗) is unstable, but the stability of the equilibrium point E3 (x3∗, y3∗) is branching. The equilibrium point E3 (x3∗, y3∗) can be stable or unstable depending on all parameters involved in the model. Variations of k parameter values are given in numerical simulation to verify the results of the analysis. Numerical simulation indicates that if k = 0,92 then nontrivial equilibrium point Ek (0,92 ; 0) stable. If k = 0,93 then Ek (0,93 ; 0) unstable and E3∗(0,929; 0,00003) stable. If k = 23,94, then Ek (23,94 ; 0) and E3∗(0,929; 0,143) stable, but E4∗(23,93 ; 0,0005) unstable. If k = 38 then Ek(38,0) stable, but E3∗(0,929; 0,145) and E4∗(23,93 ; 0,739) unstable.Keywords: anti-predator behavior, carrying capacity, and holling type III.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3344
Author(s):  
Ana Sara Gomes ◽  
Helena Ramos ◽  
Alberto Inga ◽  
Emília Sousa ◽  
Lucília Saraiva

p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.


Author(s):  
Lasse Staby ◽  
Katherine R. Kemplen ◽  
Amelie Stein ◽  
Michael Ploug ◽  
Jane Clarke ◽  
...  

Abstract Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order–disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


2020 ◽  
Vol 219 (10) ◽  
Author(s):  
Shubham Kesarwani ◽  
Prakash Lama ◽  
Anchal Chandra ◽  
P. Purushotam Reddy ◽  
A.S. Jijumon ◽  
...  

Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions. Using a yeast display library, we identified a binder against terminal tyrosine of α-tubulin, a unique PTM site. Extensive characterization validates the robustness and nonperturbing nature of our binder as tyrosination sensor, a live-cell tubulin nanobody specific towards tyrosinated microtubules. Using this sensor, we followed nocodazole-, colchicine-, and vincristine-induced depolymerization events of tyrosinated microtubules in real time and found each distinctly perturbs the microtubule polymer. Together, our work describes a novel tyrosination sensor and its potential applications to study the dynamics of microtubule and their PTM processes in living cells.


Sign in / Sign up

Export Citation Format

Share Document