subarctic pacific
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 36)

H-INDEX

62
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sachia J. Traving ◽  
Colleen T. E. Kellogg ◽  
Tetjana Ross ◽  
Ryan McLaughlin ◽  
Brandon Kieft ◽  
...  

AbstractRecent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hao-Ran Zhang ◽  
Yuntao Wang ◽  
Peng Xiu ◽  
Yiquan Qi ◽  
Fei Chai

The subarctic Pacific is one of the major high-nitrate, low-chlorophyll (HNLC) regions where marine productivity is greatly limited by the supply of iron (Fe) in the region. There is a distinct seasonal difference in the chlorophyll concentrations of the east and west sides of the subarctic Pacific because of the differences in their driving mechanisms. In the western subarctic Pacific, two chlorophyll concentration peaks occur: the peak in spring and early summer is dominated by diatoms, while the peak in late summer and autumn is dominated by small phytoplankton. In the eastern subarctic Pacific, a single chlorophyll concentration peak occurs in late summer, while small phytoplankton dominate throughout the year. In this study, two one-dimensional (1D) physical–biological models with Fe cycles were applied to Ocean Station K2 (Stn. K2) in the western subarctic Pacific and Ocean Station Papa (Stn. Papa) in the eastern subarctic Pacific. These models were used to study the role of Fe limitation in regulating the seasonal differences in phytoplankton populations by reproducing the seasonal variability in ocean properties in each region. The results were reasonably comparable with observational data, i.e., cruise and Biogeochemical-Argo data, showing that the difference in bioavailable Fe (BFe) between Stn. K2 and Stn. Papa played a dominant role in controlling the respective seasonal variabilities of diatom and small phytoplankton growth. At Stn. Papa, there was less BFe, and the Fe limitation of diatom growth was two times as strong as that at Stn. K2; however, the difference in the Fe limitation of small phytoplankton growth between these two regions was relatively small. At Stn. K2, the decrease in BFe during summer reduced the growth rate of diatoms, which led to a rapid reduction in diatom biomass. Simultaneously, the decrease in BFe had little impact on small phytoplankton growth, which helped maintain the relatively high small phytoplankton biomass until autumn. The experiments that stimulated a further increase in atmospheric Fe deposition also showed that the responses of phytoplankton primary production in the eastern subarctic Pacific were stronger than those in the western subarctic Pacific but contributed little to primary production, as the Fe limitation of phytoplankton growth was replaced by macronutrient limitation.


2021 ◽  
Author(s):  
Brandon McNabb ◽  
Philippe Tortell

Abstract. Dimethyl sulfide (DMS) is a volatile biogenic gas with the potential to influence regional climate as a source of atmospheric aerosols and cloud condensation nuclei (CCN). The complexity of the oceanic DMS cycle presents a challenge in accurately predicting sea-surface concentrations and sea-air fluxes of this gas. In this study, we applied machine learning methods to model the distribution of DMS in the NE Subarctic Pacific (NESAP), a global DMS hot-spot. Using nearly two decades of ship-based DMS observations, combined with satellite-derived oceanographic data, we constructed ensembles of 1000 machine-learning models using two techniques, random forest regression (RFR) and artificial neural networks (ANN). Our models dramatically improve upon existing statistical DMS models, capturing up to 62 % of observed DMS variability in the NESAP and demonstrate notable regional patterns that are associated with mesoscale oceanographic variability. In particular, our results indicate a strong coherence between DMS concentrations, sea surface nitrate (SSN) concentrations, photosynthetically active radiation (PAR) and sea surface height anomalies (SSHA), suggesting that NESAP DMS cycling is primarily influenced by heterogenous nutrient availability, light-dependent processes and physical mixing. Based on our model output, we derive summertime, sea-air flux estimates ranging between 0.5–2.0 Tg S yr−1 in the NESAP. Our work demonstrates a new approach to capturing spatial and temporal patterns in DMS variability, which is likely applicable to other oceanic regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vigan Mensah ◽  
Kay. I. Ohshima

AbstractThe western subarctic Pacific exhibits major biological productivity fed by the Oyashio Current and its two source waters: Western Subarctic Water, which supplies nutrients from the subarctic Pacific, and cold Okhotsk Sea Intermediate Water (OSIW), which supplies iron from the Sea of Okhotsk. We created seasonal climatologies of water properties to understand how the long-term trend (~ 50 years) and 18.6-year tidal cycle affect the Oyashio Intermediate Water (OYW). We found that over the trend, decreased OSIW outflow due to weakening of North Pacific overturning modifies OYW in winter. Meanwhile, OSIW outflow increases (decreases) in strong (weak) tide years. We predict that the opposite effects of the trend and strong tide will lead to stagnation of OYW properties until the mid-2020s, followed by accelerated warming until the mid-2030s (weak tide). A predicted 1 °C increase in OYW temperature and 50% decrease in OSIW content between 1960 and 2040 potentially have significant impact on biological productivity and carbon drawdown in the North Pacific.


Author(s):  
Alícia Martinez‐Varela ◽  
Elena Cerro‐Gálvez ◽  
Adrià Auladell ◽  
Shalabh Sharma ◽  
Mary Ann Moran ◽  
...  

2021 ◽  
Vol 7 (23) ◽  
pp. eabg2906
Author(s):  
Karla P. Knudson ◽  
Ana Christina Ravelo ◽  
Ivano W. Aiello ◽  
Christina P. Knudson ◽  
Michelle K. Drake ◽  
...  

Several North Pacific studies of the last deglaciation show hypoxia throughout the ocean margins and attribute this phenomenon to the effects of abrupt warming and meltwater inputs. Yet, because of the lack of long records spanning multiple glacial cycles and deglaciation events, it is unclear whether deoxygenation was a regular occurrence of warming events and whether deglaciation and/or other conditions promoted hypoxia throughout time. Here, subarctic Pacific laminated sediments from the past 1.2 million years demonstrate that hypoxic events recurred throughout the Pleistocene as episodes of highly productive phytoplankton growth and were generally associated with interglacial climates, high sea levels, and enhanced nitrate utilization—but not with deglaciations. We suggest that hypoxia was typically stimulated by high productivity from iron fertilization facilitated by redox-remobilized iron from flooded continental shelves.


Author(s):  
Jun Nishioka ◽  
Hajime Obata ◽  
Toru Hirawake ◽  
Yoshiko Kondo ◽  
Youhei Yamashita ◽  
...  

AbstractOne of the most important breakthroughs in oceanography in the last 30 years was the discovery that iron (Fe) controls biological production as a micronutrient, and our understanding of Fe and nutrient biogeochemical dynamics in the ocean has significantly advanced. In this review, we looked back both previous and updated knowledge of the natural Fe supply processes and nutrient dynamics in the subarctic Pacific and its impact on biological production. Although atmospheric dust has been considered to be the most important source of Fe affecting biological production in the subarctic Pacific, other oceanic sources of Fe have been discovered. We propose a coherent explanation for the biological response in subarctic Pacific high nutrient low chlorophyll (HNLC) waters that incorporates knowledge of both the atmospheric Fe supplies and the oceanic Fe supplies. Finally, we extract future directions for Fe oceanographic research in the subarctic Pacific and summarize the uncertain issues identified thus far.


Sign in / Sign up

Export Citation Format

Share Document