scholarly journals Bayesian Periodic Signal Detection Applied to Intcal98 Data

Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 979-985 ◽  
Author(s):  
V Palonen ◽  
P Tikkanen

A Bayesian multiple-frequency model has been developed for spectral analysis of data with unknown correlated noise. A description of the model is given and the method is applied to decadal atmospheric INTCAL98 Δ14C data. The noise of the INTCAL98 data is found to be red, and there seems to be no support for continuous harmonic frequencies in the data.

2018 ◽  
pp. 63-68 ◽  
Author(s):  
A. V. Ksendzuk ◽  
A. A. Kanatchikov ◽  
P. A. Gerasimov

Special aspects of space objects radiotechnical surveillance system used for filling the space tracking and surveillance system (STSS) satellite catalogue described and analyzed. Special emphasis placed on spaceborne synthetic aperture radar signals detection. Parameters of the SAR signals estimated with the proposed radiotechnical surveillance system described. Two processing methods for unknown and partially known signals proposed and analyzed. Signal detection with incompletely known parameters performs with cumulative second-order statistic. Signal detection with unknown parameters performs for periodic signal in assumption that observation interval exceed pulse repetition frequency. Proposed methods implemented in hardware demonstrator of radiotechnical surveillance system. This demonstrator works in real-time on Field Programmable Gate Array or save data on storage device for post-processing. L-band Palsar2 signal detection results presented and analyzed. Further work for hardware and software optimization described.


2002 ◽  
Vol 88 (5) ◽  
pp. 2598-2611 ◽  
Author(s):  
William C. Stacey ◽  
Dominique M. Durand

Signal detection in the CNS relies on a complex interaction between the numerous synaptic inputs to the detecting cells. Two effects, stochastic resonance (SR) and coherence resonance (CR) have been shown to affect signal detection in arrays of basic neuronal models. Here, an array of simulated hippocampal CA1 neurons was used to test the hypothesis that physiological noise and electrical coupling can interact to modulate signal detection in the CA1 region of the hippocampus. The array was tested using varying levels of coupling and noise with different input signals. Detection of a subthreshold signal in the network improved as the number of detecting cells increased and as coupling was increased as predicted by previous studies in SR; however, the response depended greatly on the noise characteristics present and varied from SR predictions at times. Careful evaluation of noise characteristics may be necessary to form conclusions about the role of SR in complex systems such as physiological neurons. The coupled array fired synchronous, periodic bursts when presented with noise alone. The synchrony of this firing changed as a function of noise and coupling as predicted by CR. The firing was very similar to certain models of epileptiform activity, leading to a discussion of CR as a possible simple model of epilepsy. A single neuron was unable to recruit its neighbors to a periodic signal unless the signal was very close to the synchronous bursting frequency. These findings, when viewed in comparison with physiological parameters in the hippocampus, suggest that both SR and CR can have significant effects on signal processing in vivo.


2011 ◽  
Vol 128-129 ◽  
pp. 354-358 ◽  
Author(s):  
Yuan Chang ◽  
Chun Wen Li ◽  
Yi Hao

This paper studies the detection of weak signal detection using a Duffing Oscillator, which is sensitive to periodic signals but insensitive to noises. The system transits from chaotic to great periodic motion when coupled to the weak periodic signal to be detected. To efficiently determine the phase transition, a novel numerical criterion is proposed based on the sharp increase of variance when phase change happens. Simulation results verified the effectiveness of this method.


Author(s):  
Haichao Jiang ◽  
Guolong Cui ◽  
Lingjiang Kong ◽  
Xiaobo Yang

Sign in / Sign up

Export Citation Format

Share Document