physiological noise
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 47)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Marina Weiler ◽  
Raphael Fernandes Casseb ◽  
Brunno Machado de Campos ◽  
Julia Sophia Crone ◽  
Evan S Lutkenhoff ◽  
...  

Objective: Resting-state functional MRI is increasingly used in the clinical setting and is now included in some diagnostic guidelines for severe brain injury patients. However, to ensure high-quality data, one should mitigate fMRI-related noise typical of this population. Therefore, we aimed to evaluate the ability of different preprocessing strategies to mitigate noise-related signal (i.e., in-scanner movement and physiological noise) in functional connectivity of traumatic brain injury patients. Methods: We applied nine commonly used denoising strategies, combined into 17 pipelines, to 88 traumatic brain injury patients from the Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy clinical trial (EpiBioS4Rx). Pipelines were evaluated by three quality control metrics across three exclusion regimes based on the participant's head movement profile. Results: While no pipeline eliminated noise effects on functional connectivity, some pipelines exhibited relatively high effectiveness depending on the exclusion regime. Once high-motion participants were excluded, the choice of denoising pipeline becomes secondary - although this strategy leads to substantial data loss. Pipelines combining spike regression with physiological regressors were the best performers, whereas pipelines that used automated data driven methods performed comparatively worse. Conclusion: In this study, we report the first large-scale evaluation of denoising pipelines aimed at reducing noise-related functional connectivity in a clinical population known to be highly susceptible to in-scanner motion and significant anatomical abnormalities. If resting-state functional magnetic resonance is to be a successful clinical technique, it is crucial that procedures mitigating the effect of noise be systematically evaluated in the most challenging populations, such as traumatic brain injury datasets.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7943
Author(s):  
Haroon Khan ◽  
Farzan M. Noori ◽  
Anis Yazidi ◽  
Md Zia Uddin ◽  
M. N. Afzal Khan ◽  
...  

Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e. optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky–Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were 0.75±0.04, 0.75±0.05, and 0.77±0.06 using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259592
Author(s):  
Redouane Jamil ◽  
Franck Mauconduit ◽  
Caroline Le Ster ◽  
Philipp Ehses ◽  
Benedikt A. Poser ◽  
...  

For functional MRI with a multi-channel receiver RF coil, images are often reconstructed channel by channel, resulting into multiple images per time frame. The final image to analyze usually is the result of the covariance Sum-of-Squares (covSoS) combination across these channels. Although this reconstruction is quasi-optimal in SNR, it is not necessarily the case in terms of temporal SNR (tSNR) of the time series, which is yet a more relevant metric for fMRI data quality. In this work, we investigated tSNR optimality through voxel-wise RF coil combination and its effects on BOLD sensitivity. An analytical solution for an optimal RF coil combination is described, which is somewhat tied to the extended Krueger-Glover model involving both thermal and physiological noise covariance matrices. Compared experimentally to covSOS on four volunteers at 7T, the method yielded great improvement of tSNR but, surprisingly, did not result into higher BOLD sensitivity. Solutions to improve the method such as for example the t-score for the mean recently proposed are also explored, but result into similar observations once the statistics are corrected properly. Overall, the work shows that data-driven RF coil combinations based on tSNR considerations alone should be avoided unless additional and unbiased assumptions can be made.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257545
Author(s):  
Harri Merisaari ◽  
Christian Federau

Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.


2021 ◽  
Author(s):  
Mohammad Amin Kamaleddin ◽  
Aaron Shifman ◽  
Daniel MW Sigal ◽  
Steven A Prescott

ABSTRACTNeurons can use different aspects of their spiking to simultaneously represent (multiplex) different features of a stimulus. For example, some pyramidal neurons in primary somatosensory cortex (S1) use the rate and timing of their spikes to respectively encode the intensity and frequency of vibrotactile stimuli. Doing so has several requirements. Because they fire at low rates, pyramidal neurons cannot entrain 1:1 with high-frequency (100-600 Hz) inputs and instead must skip (i.e. not respond to) some stimulus cycles. The proportion of skipped cycles must vary inversely with stimulus intensity for firing rate to encode stimulus intensity. Spikes must phase lock to the stimulus for spike times (intervals) to encode stimulus frequency but, in addition, skipping must occur irregularly to avoid aliasing. Using simulations and in vitro experiments in which S1 pyramidal neurons were stimulated with inputs emulating those induced by vibrotactile stimuli, we show that fewer cycles are skipped as stimulus intensity increases, as required for rate coding, and that physiological noise induces irregular skipping without disrupting phase locking, as required for temporal coding. This occurs because the reliability and precision of spikes evoked by small- amplitude, fast-onset signals are differentially sensitive to noise. Simulations confirmed that differences in stimulus intensity and frequency can be well discriminated based on differences in spike rate or timing, respectively, but only in the presence of noise. Our results show that multiplexed coding by S1 pyramidal neurons is facilitated rather than degraded by physiological levels of noise. In fact, multiplexing is optimal under physiologically noisy conditions.


2021 ◽  
Author(s):  
Tom Van Wouwe ◽  
Lena H Ting ◽  
Friedl De Groote

Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise are important determinants of movement. However, due to the limited efficiency of available computational tools, deterministic simulations of movement focus on accurately modelling the musculoskeletal system while neglecting physiological noise, and stochastic simulations account for noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal control problems are approximated using deterministic optimal control problems, which can be solved efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control as a theory of motor coordination to include muscle coordination and movement patterns emerging from non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as minimal effort strategy that complements sensorimotor feedback control in the presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true minimum effort solution to be identified as task constraints, such as movement accuracy, can be explicitly imposed, rather than being approximated using penalty terms in the cost function. Our approximate stochastic optimal control framework predicts complex features, not captured by previous simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal dynamics and physiological noise may alter neural control of movement in both healthy and pathological movements.


Author(s):  
Simone Cauzzo ◽  
Alejandro L. Callara ◽  
Maria Sole Morelli ◽  
Valentina Hartwig ◽  
Fabrizio Esposito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document