Germination Characteristics of Three Species ofCruciferae

Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 41-48 ◽  
Author(s):  
James A. Young ◽  
Raymond A. Evans ◽  
Richard O. Gifford ◽  
Richard E. Eckert

Germination of tumble mustard (Sisymbrium altissimumL.), tansy mustard (Descurainia pinnata(Walt.) Britton), and yellowflower pepperweed (Lepidium perfoliatumL.) is partially dependent on total degree hours of incubation (temperature above 0 C times the duration of incubation). This relation was similar under constant or alternating temperatures. Alternating temperature regimes with −20 C inhibited germination, and greatly depressed subsequent germination at optimum temperatures. Tansy mustard and yellowflower pepperweed have temperature-dependent after-ripening requirements. Germination of all three species responded similarly to osmotic stress. The relation between tumble mustard germination under osmotic or soil moisture stress is dependent on the texture of the soil substrate. A mucilaginous coating greatly aids the germination of yellowflower pepperweed seeds on the surface of media under low (0.05 to 0.2 bars) moisture tension. Germination of seeds of the three species recovered in soil samples from the field is radically different from that of freshly harvested material. The seeds acquire a dormancy which is broken irregularly under ideal conditions for germination.

Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 319-325 ◽  
Author(s):  
James A. Young ◽  
Raymond A. Evans

Experiments were conducted to compare the influence of production site and seed source on the germination of big sagebrush seeds in relation to incubation temperatures. Seeds of big sagebrush were collected from five plant communities located on the margin of the Carson Desert in western Nevada. Seedlings were grown from the seeds and transplanted back to the sites of collection in reciprocal gardens. Seeds from 1-yr-old gardens were tested for germination at a constant 15 C for three consecutive years. The greater quantity of seeds produced by 2- and 3-yr-old gardens were tested at 55 constant or alternating temperature regimes. Seeds of big sagebrush produced in reciprocal gardens had lower germination than seeds collected from native stands at the same locations. The reduced germination disappeared as the reciprocally transplanted plants grew older and larger, but seeds from these plants did not reach the same levels of germination as those collected from native stands at the same location. Moisture stress and/or freezing temperature conditions during flowering may have directly influenced the quality of seeds produced or interacted with the inherent genotypes of big sagebrush to trigger seed production of variable quality in relation to germination characteristics.


2009 ◽  
Vol 6 (8) ◽  
pp. 1423-1444 ◽  
Author(s):  
T. Keenan ◽  
R. García ◽  
A. D. Friend ◽  
S. Zaehle ◽  
C. Gracia ◽  
...  

Abstract. Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE"), and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+"), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.


2011 ◽  
Vol 63 (6) ◽  
pp. 392-392 ◽  
Author(s):  
Anil Gunaratne ◽  
Upul Kumari Ratnayaka ◽  
Nihal Sirisena ◽  
Jennet Ratnayaka ◽  
Xiangli Kong ◽  
...  

1964 ◽  
Vol 15 (5) ◽  
pp. 729 ◽  
Author(s):  
D Aspinall ◽  
PB Nicholls ◽  
LH May

The effects of soil moisture stress on tillering, stem elongation, and grain yield of barley (cv. Prior) have been studied by subjecting the plants to periods of stress at different stages of development. Soil moisture stress treatments consisted of repeated short cycles of stress, single short cycles (both in large pots), or single long cycles (in large lysimeters). The data collected support the contention that the organ which is growing most rapidly at the time of a stress is the one most affected. Grain numbers per ear were seriously affected by stress occurring prior to anthesis, an effect probably associated with the process of spikelet initiation and, later, with the formation of the gametes. Grain size, on the other hand, was reduced more by stress at anthesis and shortly after. Elongation of the internodes was reduced mostly by stress at or just before earing, and was less seriously affected by earlier or later stress. Tillering, although being suppressed during a drought cycle, was actually stimulated upon rewatering. The effect was greater the earlier the period of stress, and was probably related to nutrient uptake and distribution within the plant.


Sign in / Sign up

Export Citation Format

Share Document