Integrated Weed Management Systems for Irrigated Corn (Zea mays) Production in Colorado—A Case Study

Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 423-428 ◽  
Author(s):  
Mark J. Vangessel ◽  
Edward E. Schweizer ◽  
Donald W. Lybecker ◽  
Philip Westra

Cooperative research was initiated by a multidisciplinary team of weed scientists and agricultural economists in 1975 that laid the foundation for integrated weed management research in Colorado. Colorado's integrated weed management research has four phases: weed seed bank decline, systems approach to weed management, bioeconomic modeling, and multiple weed management tactics. Each phase considered weed seed bank, weed control efficacy, weed control costs, crop yield, and gross margin. All four phases emphasize the need for a weed management system that minimizes seed production in situations where a high soil weed seed bank exists. However, once the weed seed bank is reduced, a weed management program with less than 100% weed control can be employed without increasing the seed bank. Intensive weed management systems are seldom justified when economics, weed control, and weed seed bank are considered. Integrated weed management approaches require integrating crop and weed biology with management tactics. Integrated weed management requires advanced managerial skills and often more time than traditional approaches.

1995 ◽  
Vol 9 (4) ◽  
pp. 754-760 ◽  
Author(s):  
Mark J. Vangessel ◽  
Edward E. Schweizer ◽  
Donald W. Lybecker ◽  
Phil Westra

Information on the effects of multiple weed management tactics in corn is needed to develop integrated weed management systems. The effectiveness and compatibility of an in-row cultivator as compared to a standard interrow cultivator used with reduced rates of a soil-applied herbicide, rotary hoeing, and/or a bioeconomic model for POST herbicide selection was examined. Weed control with a single rotary hoeing at corn emergence controlled annual weeds similarly to two rotary hoeings. One-third recommended use rate of alachlor controlled weeds similarly to a two-thirds rate. Reduced rates of alachlor controlled more weeds than rotary hoeing over 2 yr. The in-row cultivator required early-season weed control (rotary hoeing or reduced alachlor rate) for optimum efficacy. The in-row cultivator provided better weed control than the standard cultivator while the cost of operating the two cultivators was similar. Thus, the in-row cultivator was more efficient than the standard cultivator. Furthermore, less intensive early-season weed control was required with the in-row cultivator for maximum weed control as compared to the standard cultivator. Rotary hoeing plus the in-row cultivator provided similar weed control to other weed management tactics that required both soil-applied and POST herbicides. Gross margin was influenced more by corn yield than cost of weed management tactics.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Douglas D. Buhler ◽  
Robert G. Hartzler ◽  
Frank Forcella

The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes weed seed depth in the soil, which plays a role in weed species shifts and affects efficacy of control practices. Crop rotation and weed control practices also affect the weed seedbank. Information on the influence of cropping practices on the weed seedbank should be a useful tool for integrated weed management. Decision aid models use information on the weed seedbank to estimate weed populations, crop yield loss, and recommend weed control tactics. Understanding the light requirements of weed seed may provide new approaches to weed management. Improving and applying our understanding of weed seedbank dynamics is essential to developing improved weed management systems. The principles of plant ecology must be integrated with the science of weed management to develop strategies that take advantage of basic plant responses in weed management systems for agronomic crops.


1999 ◽  
Vol 79 (1) ◽  
pp. 165-167 ◽  
Author(s):  
Clarence J. Swanton ◽  
Kevin Chandler ◽  
Anil Shrestha

Seed return from later emerging weeds is a concern in weed management systems based on critical periods of control. A study in Ontario found that estimated weed seed return to the soil surface was influenced by the duration of weed control in corn and the prevailing environmental conditions. Weeds emerging after the 8- to 11-leaf stage of corn growth did not cause an increase in total seed number compared to the residual seed bank in the weed-free control. Key words: Seedbank, weed population dynamics, integrated weed management


Weed Science ◽  
2010 ◽  
Vol 58 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Matthew R. Ryan ◽  
Richard G. Smith ◽  
Steven B. Mirsky ◽  
David A. Mortensen ◽  
Rita Seidel

Community assembly theory provides a useful framework to assess the response of weed communities to agricultural management systems and to improve the predictive power of weed science. Under this framework, weed community assembly is constrained by abiotic and biotic “filters” that act on species traits to determine community composition. We used an assembly approach to investigate the response of weed seed banks to 25 yr of management-related filtering in three different row-crop management systems in southeastern Pennsylvania: organic manure-based, organic legume-based, and conventional. Weed seed banks were sampled in April of 2005 and 2006 and quantified by direct germination in a greenhouse. We also assessed the filtering effects of weed management practices and relationships between assembled seed bank and emergent weed communities by allowing or excluding weed control practices within each management system and measuring emergent weed community response. Germinable weed seed bank densities and species richness in the final year of the study were over 40% and 15% higher, respectively, in the organic systems relative to the conventional system. Seed bank community structure in the organic systems was different from the conventional system, and the relationships between assembled seed banks and the emergent flora varied. Primary tillage, weed control, timing of planting, and fertility management appeared to be the main filters that differentiated weed seed banks in the three systems. Weed life history, emergence periodicity, seed size, and responsiveness to soil fertility and hydrology appeared to be the most important functional traits determining how weed species responded to management-related filters. Our results suggest that management systems can exert strong filtering effects that can persist over relatively long (greater than one growing season) time scales. Legacy effects of community-level filtering might be more important than previously assumed, and should be incorporated into predictive models of weed community assembly.


Weed Science ◽  
1982 ◽  
Vol 30 (S1) ◽  
pp. 40-45 ◽  
Author(s):  
C. G. McWhorter ◽  
W. C. Shaw

Producers of food have always been troubled with weeds. Hand labor was the primary source of weed control for centuries, and selective weed control was not achieved until copper sulphate was used to control mustard (Brassicaspp.) in wheat (Triticum aestivumL.) in 1896 (4, 42). Adequate crop selectivity was usually difficult to obtain with herbicides during the first 40 yr of the 20th century and the cost of the early herbicides was high.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2331
Author(s):  
Chun Liu ◽  
Makhan Singh Bhullar ◽  
Tarundeep Kaur ◽  
Jitendra Kumar ◽  
Sriyapu Reddy Sreekanth Reddy ◽  
...  

Phalaris minor Retz. (littleseed canarygrass) is the most problematic and herbicide-resistant weed in the rice-wheat cropping system in India. As such, it poses a severe threat to wheat yield and food security. A number of herbicidal and agronomic practices have been identified for the effective control of P. minor. These include crop rotation, crop establishment methods, herbicide spray technology, sowing time, weed seed harvest and effective herbicide mixtures. A population model of P. minor was built based on the life cycle of the species, herbicide resistance mechanisms and the effects of weed control practices. The model simulated the interactions of these factors and provided the best management recommendations for sustainably controlling this noxious weed species. Model results indicate that integration of chemical and non-chemical control methods was the most effective and sustainable strategy. For example, the integration of a happy seeder (a tractor-mounted mulching and sowing machine) with an effective post-emergence herbicide reduced the probability of weed control failure by 32% compared to the scenario with a rotavator and the same herbicide. Similarly, more conventional crop establishment methods such as a rotavator and conventional tillage could be accompanied by pre- or post-emergence applications of herbicide mixtures. Adoption of good herbicide spray technology and weed seed harvest delayed the onset of resistance evolution by up to four years. Furthermore, effective crop rotation such as the inclusion of sugarcane in place of rice in the summer season reduced the risk of resistance evolution by 31% within the 10 year simulation period. In addition to the scenarios using representative parameter values, the variability of model predictions was investigated based on some field experiments. The model provided a powerful tool for promoting Integrated Weed Management and the sustainable use of herbicides. Pragmatic ways of dealing with uncertainty in model prediction are discussed.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 338-348 ◽  
Author(s):  
Karen A. Renner ◽  
Scott M. Swinton ◽  
James J. Kells

The WEEDSIM bioeconomic model was developed in Minnesota and was designed to support weed management decisions for both soil-applied and postemergence weed control programs inZea maysandGlycine max.In this research, we adapted the WEEDSIM weed management model to Michigan by modifying the crop yield loss functions and herbicide efficacy ratings. We then validated the components of the model and determined whether WEEDSIM led to more profitable weed management than recommendations from SOYHERB or CORNHERB, computer decision aids based solely on herbicide efficacy and cost. The crop year significantly influenced the weed-free yield inZ. maysandG. max, but the weed—crop interference function did not change each year. Total weed seed increased in the untreated compared with the weed-free control over the 3-yr period. Weed seed did not increase significantly in WEEDSIM preemergence/postemergence (PRE/POST), WEEDSIM postemergence, or CORNHERB or SOYHERB treatments compared with the weed-free control, although annual grass seedling density at the time of postemergence herbicide application had increased by 1995 in the WEEDSIM postemergence treatment inG. maxbecause of a 2,4-D amine application only inZ. maysin 1994. WEEDSIM PRE/POST and CORNHERB provided excellent weed control in all three years, and WEEDSIM PRE/POST resulted in gross margins over weed control costs equal to or greater than CORNHERB recommendations. InG. max, Chenopodium albumand annual grass control was excellent in all three years for WEEDSIM PRE/POST, WEEDSIM postemergence, and SOYHERB treatments. The highest average gross margin for the 3-yr study was from mechanical weed control in 76-cm-wide rows ofG. max($806 ha−1) and from SOYHERB in 38- and 19-cm-wide rows ofG. max($776 and $808 ha−1, respectively). WEEDSIM recommendations controlled weeds and maintained crop yield in bothZ. maysandG. max.


2001 ◽  
Vol 81 (4) ◽  
pp. 877-880 ◽  
Author(s):  
Kevin Chandler, Anil Shrestha, and Swanton

Seed return from later-emerging weeds is a concern in soybean management systems based on critical periods for weed control. This study in Ontario estimated the weed seed return to the soil surface as influenced by the duration of weed control in soybean and soybean row spacing. Weeds emerging after the 1- to 2-trifoliate stage of soybean development did not increase the weed seedbank population compared to the residual population in the weed-free control. Weed seed return was greater in 76 cm than in 38 cm or 19 cm (twin rows) soybean row spacings. Key words: Seedbank, weed population dynamics, integrated weed management, glyphosate-resistant soybean, [Glycine max (L.) Merr].


Sign in / Sign up

Export Citation Format

Share Document