scholarly journals Pulsar Velocities

1996 ◽  
Vol 165 ◽  
pp. 213-223
Author(s):  
Matthew Bailes

Lyne & Lorimer (1994) recently demonstrated that revisions to the pulsar distance scale, coupled with new interferometric measurements of pulsar proper motions and a better treatment of selection effects, indicate that typical pulsar velocities are of the order 450 km s−1. This is between a factor of 2–4 greater than most estimates made over the last decade. This paper looks at the implications of these higher velocities for the various theories about their origin. An extremely simple argument is used to place a fairly rigid upper limit for the rate at which neutron star pairs merge of 10−5 yr−1 in the Galaxy. It appears inevitable that an extremely large fraction of binaries containing neutron stars coalesce during the common-envelope stage of massive binary evolution.

2020 ◽  
Vol 634 ◽  
pp. A126 ◽  
Author(s):  
You Wu ◽  
Xuefei Chen ◽  
Hailiang Chen ◽  
Zhenwei Li ◽  
Zhanwen Han

Context. Subdwarf B stars (sdBs) play a crucial role in stellar evolution, asteroseismology, and far-UV radiation of early-type galaxies, and have been intensively studied with observation and theory. It has theoretically been predicted that sdBs with neutron star (NS) companions exist in the Galaxy, but none have been discovered yet. This remains a puzzle in this field. In a previous study (hereafter Paper I), we have studied the formation channels of sdB+NS binaries from main-sequence (MS) stars plus NS binaries by establishing a model grid, but it is still unclear how these binaries consisting of MS stars and NS binaries came to be in the first place. Aims. We systematically study the formation of sdB+NS binaries from their original zero-age main-sequence progenitors. We bridge the gap left by our previous study in this way. We obtain the statistical population properties of sdB+NS binaries and provide some guidance for observational efforts. Methods. We first used Hurley’s rapid binary evolution code BSE to evolve 107 primordial binaries to the point where the companions of NS+MS, NS+Hertzsprung gap star, and NS+Giant Branch star binaries have just filled their Roche lobes. Next, we injected these binaries into the model grid we developed in Paper I to obtain the properties of the sdB+NS populations. We adopted two prescriptions of NS natal kicks: the classical Maxwellian distribution with a dispersion of σ = 265 km s−1, and a linear formula that assumes that the kick velocity is associated with the ratio of ejected to remnant mass. Different values of αCE, where αCE is the common-envelope ejection efficiency, were chosen to examine the effect of common-envelope evolution on the results. Results. In the Galaxy, the birthrate of sdB+NS binaries is about 10−4 yr−1 and there are ∼7000 − 21 000 such binaries. This contributes 0.3−0.5% of all sdB binaries in the most favorable case. Most Galactic sdB+NS binaries (≳60%) arise from the channel of stable mass transfer. The value of αCE has little effect on the results, but when we use the linear formula prescription of NS natal kick, the number and birthrate doubles in comparison to the results we obtained with the Maxwellian distribution. The orbital periods of sdB+NS binaries from different formation channels differ significantly, as expected. This results in two peaks in the radial velocity (RV) semi-amplitude distribution: 100 − 150 km s−1 for stable mass transfer, and 400 − 600 km s−1 for common-envelope ejection. However, the two sdB+NS binary populations exhibit similar delay-time distributions, which both peak at about 0.2 Gyr. This indicates that Galactic sdB+NS binaries are born in very young populations, probably in the Galactic disk. The sdB+NS binaries produced from the common-envelope ejection channel are potential sources of strong gravitational wave radiation (GWR), and about ∼100 − 300 could be detected by the Laser Interferometer Space Antenna (LISA) with a signal-to-noise ratio of 1. Conclusions. Most sdB+NS binaries are located in the Galactic disk with small RV semi-amplitudes. SdB+NS binaries with large RV semi-amplitudes are expected to be strong GWR sources, some of which could be detected by LISA in the future.


2000 ◽  
Vol 530 (2) ◽  
pp. 890-895 ◽  
Author(s):  
Vassiliki Kalogera ◽  
Duncan R. Lorimer

Author(s):  
Alejandro Vigna-Gómez ◽  
Morgan MacLeod ◽  
Coenraad J. Neijssel ◽  
Floor S. Broekgaarden ◽  
Stephen Justham ◽  
...  

Abstract Close double neutron stars (DNSs) have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational wave sources. They are believed to have experienced at least one common envelope episode (CEE) during their evolution prior to DNS formation. In the last decades, there have been numerous efforts to understand the details of the common envelope (CE) phase, but its computational modelling remains challenging. We present and discuss the properties of the donor and the binary at the onset of the Roche lobe overflow (RLOF) leading to these CEEs as predicted by rapid binary population synthesis models. These properties can be used as initial conditions for detailed simulations of the CE phase. There are three distinctive populations, classified by the evolutionary stage of the donor at the moment of the onset of the RLOF: giant donors with fully convective envelopes, cool donors with partially convective envelopes, and hot donors with radiative envelopes. We also estimate that, for standard assumptions, tides would not circularise a large fraction of these systems by the onset of RLOF. This makes the study and understanding of eccentric mass-transferring systems relevant for DNS populations.


1979 ◽  
Vol 83 ◽  
pp. 1-22
Author(s):  
J. B. Hutchings

I would like to start with a quick overview of the O stars - their significance and role in the galaxy and in astrophysics - just to remind ourselves of why we are here and what we hope to talk about. In Table 1 I show a rough outline of the contribution of O stars to what happens in the galaxy as a whole. Because of their extreme luminosity, they contribute a large fraction of the radiation of the galaxy, while forming a very tiny group of objects and mass. Because of their short lifetime they are a population that has gone through 104 generations in the life of the galaxy. Their high mass loss rates may account for a large fraction of the new matter injected into the interstellar medium, and they probably power some significant fraction of the hard X-ray sources in the galaxy, by virtue of the fact that a companion can become a neutron star a) without disrupting the binary and b) while the companion is still a mass losing O star.


2012 ◽  
Vol 08 ◽  
pp. 209-219 ◽  
Author(s):  
MAXIM V. BARKOV

In this paper we propose a new plausible mechanism of supernova explosions specific to close binary systems. The starting point is the common envelope phase in the evolution of a binary consisting of a red super giant and a neutron star. As the neutron star spirals towards the center of its companion it spins up via disk accretion. Depending on the specific angular momentum of gas captured by the neutron star via the Bondi-Hoyle mechanism, it may reach millisecond periods either when it is still inside the common envelope or after it has merged with the companion core. The high accretion rate may result in strong differential rotation of the neutron star and generation of a magnetar-strength magnetic field. The magnetar wind can blow away the common envelope if its magnetic field is as strong as 1015 G, and can destroy the entire companion if it is as strong as 1016 G. The total explosion energy can be comparable to the rotational energy of a millisecond pulsar and reach 1052 erg. The result is an unusual type-II supernova with very high luminosity during the plateau phase, followed by a sharp drop in brightness and a steep light-curve tail. The remnant is either a solitary magnetar or a close binary involving a Wolf-Rayet star and a magnetar. When this Wolf-Rayet star explodes this will be a third supernovae explosion in the same binary. A particularly interesting version of the binary progenitor involves merger of a red super giant star with an ultra-compact companion, neutron star or black hole. In the case if a strong magnetic field is not generated on the surface of a neutron star then it will collapse to a black hole. After that we expect the formation of a very long-lived accretion disk around the black hole. The Blandford-Znajek driven jet from this black hole may drive not only hypernovae explosion but produce a bright X-ray transient event on a time scale of 104 s.


2004 ◽  
Vol 194 ◽  
pp. 266-266
Author(s):  
T. Bulik ◽  
R. Moderski ◽  
K. Belczyński

The masses of compact object (black hole, neutron star) binaries depend strongly on the parameters describing stellar evolution. Such masses or their functions can be measured using gravitational waves or through microlensing searches. We analyze an example of the varying common envelope efficiency and show the dependence of distributions of the measured chirp masses in gravitational waves mass ratios through microlensing taking into account the relevant selection effects.


2012 ◽  
Vol 746 (1) ◽  
pp. 74 ◽  
Author(s):  
Paul M. Ricker ◽  
Ronald E. Taam

2020 ◽  
Vol 635 ◽  
pp. A97 ◽  
Author(s):  
Simone S. Bavera ◽  
Tassos Fragos ◽  
Ying Qin ◽  
Emmanouil Zapartas ◽  
Coenraad J. Neijssel ◽  
...  

Context. After years of scientific progress, the origin of stellar binary black holes is still a great mystery. Several formation channels for merging black holes have been proposed in the literature. As more merger detections are expected with future gravitational-wave observations, population synthesis studies can help to distinguish between them. Aims. We study the formation of coalescing binary black holes via the evolution of isolated field binaries that go through the common envelope phase in order to obtain the combined distributions of observables such as black-hole spins, masses and cosmological redshifts of mergers. Methods. To achieve this aim, we used a hybrid technique that combines the parametric binary population synthesis code COMPAS with detailed binary evolution simulations performed with the MESA code. We then convolved our binary evolution calculations with the redshift- and metallicity-dependent star-formation rate and the selection effects of gravitational-wave detectors to obtain predictions of observable properties. Results. By assuming efficient angular momentum transport, we are able to present a model that is capable of simultaneously predicting the following three main gravitational-wave observables: the effective inspiral spin parameter χeff, the chirp mass Mchirp and the cosmological redshift of merger zmerger. We find an excellent agreement between our model and the ten events from the first two advanced detector observing runs. We make predictions for the third observing run O3 and for Advanced LIGO design sensitivity. We expect approximately 80% of events with χeff <  0.1, while the remaining 20% of events with χeff ≥ 0.1 are split into ∼10% with Mchirp <  15 M⊙ and ∼10% with Mchirp ≥ 15 M⊙. Moreover, we find that Mchirp and χeff distributions are very weakly dependent on the detector sensitivity. Conclusions. The favorable comparison of the existing LIGO/Virgo observations with our model predictions gives support to the idea that the majority, if not all of the observed mergers, originate from the evolution of isolated binaries. The first-born black hole has negligible spin because it lost its envelope after it expanded to become a giant star, while the spin of the second-born black hole is determined by the tidal spin up of its naked helium star progenitor by the first-born black hole companion after the binary finished the common-envelope phase.


2010 ◽  
Vol 719 (1) ◽  
pp. L28-L31 ◽  
Author(s):  
Christopher J. Deloye ◽  
Ronald E. Taam

1996 ◽  
Vol 165 ◽  
pp. 3-15 ◽  
Author(s):  
R.E. Taam

Recent three-dimensional studies of the common-envelope phase of binary evolution have provided important insights into its theoretical description. The role of non-axisymmetric effects associated with gravitational torques is essential for understanding all aspects of the evolution. For successful ejection of the common envelope and survival of the remnant compact binary it is required that the orbital period of the progenitor system is long, so that one of the components of the system is in the red giant or red supergiant stage of evolution. Not only must there be sufficient energy released from the orbit to unbind the common envelope, but it is also necessary that a sufficiently steep density gradient exist above the evolved core of the giant. If these conditions are satisfied, the time scale for orbital decay in the region above the core exceeds the time scale for mass loss from the common envelope and merger is avoided. The implications of these results for the formation of cataclysmic variables (CVs), low-mass X-ray binaries (LMXBs), and the descendants of high-mass X-ray binaries (HMXBs) are discussed.


Sign in / Sign up

Export Citation Format

Share Document