scholarly journals Optical Polarization of 3C 265

1996 ◽  
Vol 175 ◽  
pp. 223-226 ◽  
Author(s):  
M.H. Cohen ◽  
H.D. Tran ◽  
P.M. Ogle ◽  
R.W. Goodrich

3C 265 is a high-redshift (z=0.811) radio galaxy showing extended emission line regions (EELR) to 50 kpc from the nucleus (McCarthy et al 1995). However, it does not show the alignment effect (McCarthy 1993) that is common in distant galaxies: the EELR is not extended along the radio axis.

1996 ◽  
Vol 175 ◽  
pp. 227-229
Author(s):  
R. Morganti ◽  
C.N. Tadhunter ◽  
N. Clark ◽  
N. Killeen

Extended emission line regions aligned with the radio axis are a common feature of powerful radio galaxies and there is much interest in the origin of the extended gas and excitation mechanism. One model that can produce this alignment is photoionization by anisotropic nuclear continuum radiation. However, strong evidence exists, especially in high redshift radio galaxies, for powerful interactions between the relativistic radio jets and the ISM/IGM. Here we present the results of our study of the southern radio galaxy PKS 2250–41 (z = 0.308). This object is the most spectacular found in a sample of southern radio sources studied by Tadhunter et al. (1993) and it displays particularly clear evidence for such an interaction (Tadhunter et al. 1994; Dickson et al. 1995).


2000 ◽  
Vol 540 (2) ◽  
pp. 678-686 ◽  
Author(s):  
Geoffrey V. Bicknell ◽  
Ralph S. Sutherland ◽  
Wil J. M. van Breugel ◽  
Michael A. Dopita ◽  
Arjun Dey ◽  
...  

2020 ◽  
Vol 634 ◽  
pp. A111 ◽  
Author(s):  
J. P. U. Fynbo ◽  
P. Møller ◽  
K. E. Heintz ◽  
J. N. Burchett ◽  
L. Christensen ◽  
...  

We report on the discovery of a peculiar broad absorption line (BAL) quasar identified in our Gaia-assisted survey of red quasars. The systemic redshift of this quasar was difficult to establish because of the absence of conspicuous emission lines. Based on deep and broad BAL troughs of at least Si IV, C IV, and Al III, a redshift of z = 2.41 was established under the assumption that the systemic redshift can be inferred from the red edge of the BAL troughs. However, we observe a weak and spatially extended emission line at 4450 Å that is most likely due to Lyman-α emission, which implies a systemic redshift of z = 2.66 if correctly identified. There is also evidence for the onset of Lyman-α forest absorption bluewards of 4450 Å and evidence for Hα emission in the K band consistent with a systemic redshift of z = 2.66. If this redshift is correct, the quasar is an extreme example of a detached low-ionisation BAL quasar. The BALs must originate from material moving with very large velocities ranging from 22 000 km s−1 to 40 000 km s−1. To our knowledge, this is the first case of a systemic-redshift measurement based on extended Lyman-α emission for a BAL quasar. This method could also be useful in cases of sufficiently distant BL Lac quasars without systemic-redshift information.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2019 ◽  
Vol 15 (S352) ◽  
pp. 121-122
Author(s):  
A. Plat ◽  
S. Charlot ◽  
G. Bruzual ◽  
A. Feltre ◽  
A. Vidal-Garca ◽  
...  

AbstractTo understand how the nature of the ionizing sources and the leakage of ionizing photons in high-redshift galaxies can be constrained from their emission-line spectra, we compare emission-line models of star-forming galaxies including leakage of ionizing radiation, active galactic nuclei (AGN) and radiative shocks, with observations of galaxies at various redshifts with properties expected to approach those of primeval galaxies.


Sign in / Sign up

Export Citation Format

Share Document