scholarly journals Numerical Simulations of Star Formation Bursts Induced by the Galaxy-Galaxy Interaction

1987 ◽  
Vol 115 ◽  
pp. 650-653
Author(s):  
Masafumi Noguchi ◽  
Shiro Ishibashi

The galaxy-galaxy interaction has been proposed as a possible triggering mechanism of the star formation bursts in some galaxies (e.g. Larson and Tinsley 1978). To investigate the nature of star formation bursts triggered by interaction we have numerically simulated close encounters between disk galaxies, taking the star formation process into account (see Noguchi and Ishibashi 1986 for details). We used the cloud-particle model, in which gas clouds move as test particles in the gravitational field of the galaxies. When two clouds collide with each other, an OB-star is formed. The cloud system loses its kinetic energy by inelastic cloud-cloud collisions. The supernova explosion which follows the formation of an OB-star provides kinetic energy to the nearby clouds.

2019 ◽  
Vol 14 (S353) ◽  
pp. 262-263
Author(s):  
Shuai Feng ◽  
Shi-Yin Shen ◽  
Fang-Ting Yuan

AbstractThe interaction between galaxies is believed to be the main origin of the peculiarities of galaxies. It can disturb not only the morphology but also the kinematics of galaxies. These disturbed and asymmetric features are the indicators of galaxy interaction. We study the velocity field of ionized gas in galaxy pairs based on MaNGA survey. Using the kinemetry package, we fit the velocity field and quantify the degree of kinematic asymmetry. We find that the fraction of high kinematic asymmetry is much higher for galaxy pairs with dp⩽30h−1kpc. Moreover, compared to a control sample of single galaxies, we find that the star formation rate is enhanced in paired galaxies with high kinematic asymmetry. For paired galaxies with low kinematic asymmetry, no significant SFR enhancement has been found. The galaxy pairs with high kinematic asymmetry are more likely to be real interacting galaxies rather than projected pairs.


1983 ◽  
Vol 100 ◽  
pp. 131-132
Author(s):  
W. W. Roberts ◽  
M. A. Hausman ◽  
F. H. Levinson

We study the gas in a spiral galaxy with a cloud-dominated “stellar association-perturbed” interstellar medium from the standpoint of a cloud-particle model. Through N-body computational simulations, we follow the time evolution of the system of gas clouds and the corresponding system of young stellar associations forming from the clouds. Basic physical processes are modeled in a three-step cyclic procedure: (1) dynamical propagation of the clouds and young stellar associations, (2) simulation of cloud-cloud collisions, and (3) formation of new associations of protostars that are triggered by the local mechanisms of cloud-cloud collisions and cloud interactions with existing young stellar associations.


2013 ◽  
Vol 768 (1) ◽  
pp. 90 ◽  
Author(s):  
Lauranne Lanz ◽  
Andreas Zezas ◽  
Nicola Brassington ◽  
Howard A. Smith ◽  
Matthew L. N. Ashby ◽  
...  

2012 ◽  
Vol 8 (S292) ◽  
pp. 193-193
Author(s):  
Ming-Yi Lin ◽  
Sébastien Foucaud ◽  
Yasuhiro Hashimoto

AbstractMerging, resulting from galaxy interaction and collision, is one essential scenario to interpret the distinct evolutionary stages of galaxy formation. However AGNs are believed to play an essential role towards the final stages of this scenario, in particular to clear the galaxy from a large excess of dust. Selecting galaxies with both 70μm and X-ray detection will help to understand the relation between star formation and AGN. We are taking advantage of the extensive multi-wavelength coverage of the Cosmic Evolution Survey (COSMOS) field to dissect the AGN influence on infrared luminous objects. We demonstrate that enhanced star formation is more probably responsible for additional obscuration of the central AGN than the dust torus, in agreement with current galaxy formation theory. Furthermore, we demonstrate that the presence of an AGN does not increase the galaxy dust temperature significantly.


2016 ◽  
Vol 11 (S321) ◽  
pp. 296-296
Author(s):  
Marina Rodríguez-Baras ◽  
A.I. Díaz ◽  
F.F. Rosales-Ortega

AbstractThis project is aimed at understanding the dependence of star formation on the environment by analysing young stellar populations in two very different positions in disk galaxies: circumnuclear and outer disk giant regions. Integral field spectroscopy (IFS) provide an ideal means to achieve these goals providing simultaneous spatial and spectral resolution. Here we present the characterization of the work sample, composed by 671 outer regions and 725 inner regions from 263 isolated spirals galaxies observed by the CALIFA survey. The wide number of regions in both samples allows us to obtain statistically relevant results about the influence of metallicity, density and environment on star formation, and how it disseminates over the galaxy, to obtain evolutionary stories for the star-forming regions and to compare our results with models of massive star formation and galactic chemical evolution.


2018 ◽  
Vol 609 ◽  
pp. A60 ◽  
Author(s):  
S. Khoperskov ◽  
M. Haywood ◽  
P. Di Matteo ◽  
M. D. Lehnert ◽  
F. Combes

Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), “quenching”, in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9–10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20−35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.


1987 ◽  
Vol 115 ◽  
pp. 633-633
Author(s):  
B. Guiderdoni

From a sample of Virgo Cluster and “field” disk galaxies, it is shown that a critical value of the HI surface density discriminates between RDDO anemic and “healthy” spirals. Below this threshold, at least massive stars do not form any more and the galaxy gets the anemic appearance. The influence of the HI content on the global star formation rate is discussed in the context of present models (Elmegreen 1979, Seiden and Gerola 1979, Dopita 1985), as well as the fate of disks in cluster and “field” environments. The existence of this threshold is an issue for the problem caused by the short gas consumption time scales derived from the observations of spiral galaxies.


1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


1997 ◽  
Vol 476 (2) ◽  
pp. 544-559 ◽  
Author(s):  
M. Samland ◽  
G. Hensler ◽  
Ch. Theis

Sign in / Sign up

Export Citation Format

Share Document